Advertisement

Journal of Earth System Science

, Volume 115, Issue 1, pp 99–112 | Cite as

Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography

  • Suryendu Dutta
  • Michael Steiner
  • Santanu Banerjee
  • Bernd-Dietrich Erdtmann
  • Silambuchelvan Jeevankumar
  • Ulrich Mann
Article

Abstract

Chuaria circularis (Walcott 1899) from the Suket Shale of the Vindhyan Supergroup (central India) has been reinvestigated for its morphology and chemical composition using biostatistics, electron microscopy and pyrolysis-gas chromatography. Morphology and microscopic investigations provide little clues on the specific biological affinity ofChuaria as numerous preservational artifacts seem to be incorporated. On the contrary, the predominance of η aliphatic pyrolysates of presently studiedChuaria from India rather supports an algal affinity. Moreover, the reflectance ofC circularis can be used to obtain a comparative maturity parameter of the Precambrian sediments. The review of the age and geographical distribution ofC circularis constrains that this species cannot be considered as an index fossil for the Proterozoic time.

Keywords

Chuaria circularis Mesoproterozoic Vindhyan Supergroup pyrolysis-gas chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amard B 1992 Ultrastructure ofChuaria (Walcott) Vidal and Ford (Acritarcha) from the Late Proterozoic Pendjari Formation, Benin and Burkina-Faso, West Africa;Precamb. Res. 57 121–133.CrossRefGoogle Scholar
  2. Amard B 1997Chuaria pendjariensis n. sp. Acritarche du bassin des Volta, Benin et Burkina-Faso, Africa de l’Ouest: un taxon nouveau du Cambrien inférieur; C.R. Acad. Sci. Paris T324 (série Iia) 477-483.Google Scholar
  3. Arouri K R, Greenwood P F and Walter M R 1999 A possible chlorophycean affinity of some Neoproterozoic acritarchs;Org. Geochem. 30 1323–1337.CrossRefGoogle Scholar
  4. Arouri K R, Greenwood P F and Walter M R 2000 Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterization;Org. Geochem. 31 75–89.CrossRefGoogle Scholar
  5. Baldis E D P, Baldis B A and Cuomo J 1983 Los fosiles Precambricos de la formacion Sierras Bayas (Olavarria) y su importancia intercontinental;Asociación Geológica Argentina, Revista XXXVII (1) 73–83.Google Scholar
  6. Banerjee S, Dutta S, Paikaray S and Mann U 2006 Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India);J. Earth Syst. Sci., this issue.Google Scholar
  7. Bertrand R and Héroux 1987 Chitinozoan, Graptolite and Scolecodont reflectance as an alternative to vitrinite and Pyrobitumen reflectance in Ordovician and Silurian strata, Anticosti island, Quebec, Canada;AAPG Bulletin 71 951–957.Google Scholar
  8. Bose P K, Sarkar S, Chakraborty S and Banerjee S 2001 Overview of the Mesoto Neoproterozoic evolution of the Vindhyan basin, Central India;Sedim. Geol. 141 395–419.CrossRefGoogle Scholar
  9. Brasier M D, Parejon A and De San Jose M A 1979 Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain;Estudios Geol. 35 379–383.Google Scholar
  10. Brocks J J, Love G D, Snape C E, Logan G A, Summons R E and Buick R 2003 Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis;Geochimica et Cosmochimica Acta 67 1521–1530.CrossRefGoogle Scholar
  11. Butterfield N J, Knoll A H and Swett K 1994 Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen;Fossils and Strata 34 1–84.Google Scholar
  12. Chanda S K and Bhattacharyya A 1982 Vindhyan sedimentation and paleogeography: post-Auden developments; In:Geology of Vindhyanchal (eds) Valdiya K S, Bhatia S B and Gaur V K (New Delhi: Hindustan Publishing Corporation) pp. 88–101.Google Scholar
  13. Chapman F 1935 Primitive fossils, possibly Atrematous and Neotrematous brachiopoda from the Vindhyans of India;Rec. Geol. Surv. Ind. 69 109–120.Google Scholar
  14. Chen M 1991 Discussion on the stratigraphic significance of macrofossils from the Late Precambrian sequence in Southern Liaoning Province;Scienta Geologica Sinica 2 120–128.Google Scholar
  15. Cooper R A, Jago J B, Mackinnon D I, Shergold J H and Vidal G 1982 Late Precambrian and Cambrian fossils from Northern Victoria Land and their stratigraphic implications; In:Antarctic Geoscience (ed.) Craddock C (The University of Wisconsin Press) pp. 629-633.Google Scholar
  16. Dai H and Peng Y 1987 Stratigraphic classification and biota characters of Late Presinian in Yunnan and discussion on its ages;Precambrian Geology (Beijing: Geological Publishing House) pp. 115–126.Google Scholar
  17. Damassa S P and Knoll A H 1986 Micropalaeontology of the late Proterozoic Arcoona Quartzite Member of the Tent Hill Formation, Stuart Shelf, South Australia;Acheringa 10 417–430.Google Scholar
  18. de Leeuw J W, Versteegh G J M and van Bergen P F Biomacromolecules of algae and plants and their fossil analogues;Plant Ecology. (in press).Google Scholar
  19. Derenne S, Largeau C, Berkaloff C, Rousseau B, Wilheim C and Hatcher P 1992 Non-hydrolysable macro-molecular constituents from outer walls ofChlorella fusca andNanochlorum eucaryotum;Phytochemistry 31 1923–1929.CrossRefGoogle Scholar
  20. Du R and Tian L 1985 Algal macrofossils from the Qingbeikou System in the Yanshan Range of North China;Precamb. Res. 29 5–14.CrossRefGoogle Scholar
  21. Duan C 1982 Late Precambrian algal megafossilsChuaria andTawuia in some areas of eastern China;Alchering 6 57–68.Google Scholar
  22. Dutta S, Greenwood P F, Brocke R, Schaefer R G and Mann U 2006 New insights into the relationship betweenTasmanites and tricyclic terpenoids;Organic Geochemistry 37 117–127.CrossRefGoogle Scholar
  23. Eisenack A 1966 ÜberChuaria wimani Brotzen;Neues Jahrbuch für Geologie und Paläontologie 1 52–56.Google Scholar
  24. Ford T D and Breed W J 1973 The problematical Precambrian fossilChuaria;Palaeontology 16 535–550.Google Scholar
  25. Germs G J B, Knoll A H and Vidal G 1986 Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa);Precamb. Res. 32 45–62.CrossRefGoogle Scholar
  26. Ghare M A and Badve R M 1978 OnChuaria circularis Walcott from the Suket Shale of Rampura, Madhaya Pradesh; In:Proceedings of the Seventh Indian Colloq. on Micropalaeontology and Stratigraphy (ed.) Rasheed D A (University of Madras, Madras) pp. 31–40.Google Scholar
  27. Greenwood P F, Arouri K R and George S C 2000 Tricyclic terpenoid composition ofTasmanites kerogen as determined by pyrolysis GC-MS;Geochim. Cosmochim. Acta 64 1249–1263.CrossRefGoogle Scholar
  28. Grice K, Schouten S, Blokker P, Derenne S, Largeau C, Nissenbaum A and Sinninghe Damsté J S 2003 Structural and isotopic analysis of kerogens in sediments rich in free sulfurisedBotryococcus braunii biomarkers;Org. Geochem. 34 471–482.CrossRefGoogle Scholar
  29. Hatcher P G and Clifford D J 1997 The organic geochemistry of coal: from plant materials to coal;Org. Geochem. 27 251–274.CrossRefGoogle Scholar
  30. Haines P W 1998Chuaria Walcott, 1899 in the lower Wessel Group, Arafura Basin, northern Australia;Alcheringa 22 1–8.Google Scholar
  31. Hoffknecht A 1991 Mikropetrographische, organischgeochemische, mikrothermometrische und mineralogische Untersuchungen zur Bestimmung der organischen Reife von Graptolithen-Periderm;Göttinger Arbeiten zur Geologie und Paläontologie 48 1–98.Google Scholar
  32. Hofmann H J 1971 Precambrian fossils, pseudofossils and problematica in Canada;Bull. Geol. Surv. Canada 189 1–146.Google Scholar
  33. Hofmann H J 1977 The problematic fossilChuaria from the Late Precambrian Uinta mountain Group, Utah;Precamb. Res. 4 1–11.CrossRefGoogle Scholar
  34. Hofmann H J 1985a Precambrian carbonaceous megafossils; In:Paleoalgology: Contemporary Research and Applications (eds) Toomy D F and Nitecki M H (Berlin, Heidelberg: Springer-Verlag) pp. 20–33.Google Scholar
  35. Hofmann H J 1985b The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, northwest Canada;Palaeontology 28 331–354.Google Scholar
  36. Hofmann H J 1992 Proterozoic carbonaceous films; In:The Proterozoic Biosphere — A Multidisciplinary Study (eds) Schopf J W and Klein C (Cambridge: Cambridge University Press) pp. 349–357.Google Scholar
  37. Hofmann H J and Chen J 1981 Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian Northern China;Can. J. Earth Sci. 18 443–447.Google Scholar
  38. Hofmann H J and Rainbird R H 1994 Carbonaceous megafossils from the Neoproterozoic Shaler Supergroup of Arctic Canada;Palaeontology 37 721–731.Google Scholar
  39. Javaux E J, Knoll A H and Walter M 2004 TEM evidence for eukaryotic diversity in mid-Proterozoic oceans;Geobiology 2 121–132.CrossRefGoogle Scholar
  40. Jones H J 1909 In: General Report,Rec. Geol. Surv. India 3 66.Google Scholar
  41. Jux U 1977 Über die Wandstrukuren sphaeromorpher Acritarchen:Tasmanites Newton,Tapajonites Sommer and Van Boekel,Chuaria Walcott;Palaeontographica Abt. B 160 1–16.Google Scholar
  42. Kirschvink J L 1992 A Paleogeographic model for Vendian and Cambrian time; In:The Proterozoic Biosphere (eds) Schopf J W and Klein C (Cambridge: Cambridge University Press) pp. 569–581.Google Scholar
  43. Knoll A H 1982 Microfossil-based biostratigraphy of the Precambrian Hecla Hoek sequence, Nordaustlandet, Svalbard;Geol. Mag. 119 269–279.CrossRefGoogle Scholar
  44. Kumar S 2001 Mesoproterozoic megafossilChuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India;Precamb. Res. 106 187–211.CrossRefGoogle Scholar
  45. Kumar S and Srivastava P 1997 A note on the carbonaceous megafossils from the Neoproterozoic Bhander Group, Maihar area, Madhya Pradesh;J. Pal. Soc. India 42 141–146.Google Scholar
  46. Larter S R and Horsfield B 1993 Determination of structural components of kerogens by the use of analytical pyrolysis methods; In:Organic Geochemistry (eds) Engel M H, Macko S A (New York: Plenum Press) pp. 271–288.Google Scholar
  47. Li C, Peng P, Sheng G and Fu J 2004 A study of a 1.2 Ga kerogen using Ru ion-catalyzed oxidation and pyrolysis-gas chromatography-mass spectrometry: structural features and possible source;Org. Geochem. 35 531–541.CrossRefGoogle Scholar
  48. Mackowsky M T 1982 Methods and tools of examination; In:Textbook of Coal Petrology (eds) Stach E, Mackowsky M T, Taylor G H, Chandra D and Teichmüller R (Berlin: Gebrüder Borntraeger) pp. 295–299.Google Scholar
  49. Maithy P K and Shukla M 1977 Microbiota from the Suket Shale, Rampura, Vindhyan System, Madhya Pradesh;Palaeobotanist 23 176–188.Google Scholar
  50. Maithy P K and Shukla M 1984 Reappraisal ofFermoria and allied remains from the Suket Shale Formation, Rampura;Palaeobotanist 32 146–152.Google Scholar
  51. Obermajer M, Fowler M G, Goodarzi F and Snowdon L R 1996 Assessing thermal maturity of Paleozoic rocks from reflectance of chitinozoa as constrained by geochemical indicators: an example from southern Ontario, Canada;Mar. Petrol. Geol. 13 907–919.CrossRefGoogle Scholar
  52. Ogurtsova R N and Sergeev V N 1989 The Megasphaeromorphids of the Tsitskaisk deposits of the Upper Precambrian of South Kazakhstan;Paleontologitscheskii J. 2 119–122 (in Russian).Google Scholar
  53. Pjatiletov V G 1980 New finds of microfossils of Navifusa in the Lachandin stage;Palaeontologitscheskii J. 3 143–145.Google Scholar
  54. Poelchau H S, Baker D R, Hantchel T, Horsfield B and Wygrala 1997 Basin simulation and the design of the conceptual basin model; In: Petroleum and Basin Evolution (eds) D H Welte, B Horsfield and D R Baker (Berlin, Heidelberg: Springer-Verlag) pp. 3–62.Google Scholar
  55. Rai V and Gautam R 1998 New occurrence of carbonaceous megafossils from the Mesoto Neoproterozoic horizons of the Vindhyan Supergroup, Kaimur-Katni areas, Madhya Pradesh, India;Geophytology 26 13–25.Google Scholar
  56. Rai V, Shukla M and Gautam R 1997 Discovery of carbonaceous megafossils (Chuaria-Tawuia assemblage) from the Neoproterozoic Vindhyan succession (Rewa Group), Allahabad-Rewa area, India;Curr. Sci. 73 783–788.Google Scholar
  57. Rasmussen B, Bose P K, Sarkar S, Banerjee S, Fletcher I R and McNaughton N J 2002 1.6 Ga U-Pb zircon ages for the chorhat sandstone, Lower Vindhyan: possible implications for the early evolution of animals;Geology 30 103–106.CrossRefGoogle Scholar
  58. Sahni M R 1936Fermeria minima: A revised classification of the organic remains from the Vindhyan of India;M. Rec. Geol. Surv. India 458-468.Google Scholar
  59. Sahni M R 1977 Vindhyan palaeobiology, stratigraphy and depositional environments: a critical review;J. Pal. Soc. India 20 289–304.Google Scholar
  60. Sarangi S, Gopalan K and Kumar S 2004 Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution;Precamb. Res. 132 107–121.CrossRefGoogle Scholar
  61. Sarkar S, Banerjee S, Chakraborty S and Bose P K 2002 Shelf storm flow dynamics: insight from the Mesoproterozoic Rampur Shale, Central India;Sedim. Geol. 147 89–104.CrossRefGoogle Scholar
  62. Sharma M and Shukla M 1999 Carbonaceous megaremains from the Neoproterozoic Owk Shales Formations of the Kurnool Group. Andhra Pradesh, India;Curr. Sci. 76 1247–1251.Google Scholar
  63. Stankiewicz B A, Briggs D E G, Michels R, Collinson M E, Flannery M B and Evershed R P 2000 Alternative origin of aliphatic polymer in kerogen;Geology 28 559–562.CrossRefGoogle Scholar
  64. Steiner M 1994 Die Neoproterozoischen Megaalgen Südchinas;Berliner Geowissenschaftliche Abhandlungen (E) 15 1–146.Google Scholar
  65. Steiner M 1997Chuaria circularis WALCOTT 1899-“Megasphaeromorph Acritarch” or Prokaryotic Colony? In:C. I. M. P. Acritarch in Praha (eds) Fatka O and Servais T;Acta Univ. Carolinae Geol. 40 645-665.Google Scholar
  66. Sun W 1987 Palaeontology and biostratigraphy of Late Precambrian macroscopic colonial algae:Chuaria andTawuia Hofmann;Palaeontographica Abt. B 203 109–134.Google Scholar
  67. Suresh R and Sundara Raju T P 1983 ProblematicChuaria, from the Bhima Basin, South India;Precamb. Res. 23 79–85.CrossRefGoogle Scholar
  68. Talyzina M N 2000 Ultrastructure and morphology ofChuaria circularis (Walcott 1899) Vidal and Ford (1985) from the Neoproterozoic Visingsö Group, Sweden;Precamb. Res. 102 123–134.CrossRefGoogle Scholar
  69. Versteegh G J M, Blokker P, Wood G, Collinson M E, Sinninghe Damsté J S and de Leeuw J W 2004 Oxidative polymerization of unsaturated fatty acids as a preservation pathway for microalgal organic matter;Org. Geochem. 35 1129–1139.CrossRefGoogle Scholar
  70. Vidal G 1974 Late Precambrian microfossils from the basal sandstone unit of the Visingsö Beds, South Sweden;Geologica et Paleontologica 8 1–14.Google Scholar
  71. Vidal G 1976 Late Precambrian microfossils from the Visingsö Beds in Southern Sweden;Fossil and Strata 9 1–57.Google Scholar
  72. Vidal G, Moczydlowska M and Rudavskaya V A 1993 Biostratigraphical implications of aChuaria-Tawuia assemblage and associated acritarchs from the Neoproterozoic of Yakutia;Palaeontology 36 387–402.Google Scholar
  73. Walcott C D 1899 Precambrian fossiliferous formations;Geol. Soc. Am. Bull. 19 199–244.Google Scholar
  74. White D 1928 Study of the fossil floras in the Grand Canyon;Carnegie Inst. Washington, Yearbook 27 389–390.Google Scholar
  75. Yalçin M N, Littke R and Sachsenhofer R F 1997 Thermal history of sedimentary basins; In:Petroleum and Basin Evolution (eds) Welte D H, Horsfield B and Baker D R (Berlin, Heidelberg: Springer-Verlag) pp. 71–161.Google Scholar
  76. Yuan X, Xiao S, Li J, Yin L and Cao R 2001 Pyritized chuaridis with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China;Precamb. Res. 107 253–263.CrossRefGoogle Scholar
  77. Zhang R, Feng S, MA G, XU G, Yan D, Li Z, Jiang D and WU W 1991 Discovery ofChuaria-Tawuia assemblage in Shilu Group, Hainan Island and its significance;Science in China (Series B) 33 211–222.Google Scholar
  78. Zhu S, Sun S, Huang X, HE Y, Zhu G, Sun L and Zhang K 2000 Discovery of carbonaceous compressions and their multicellur tissues from the Changzhougou Formation (1800 Ma) in the Yanshan range, North China;Chinese Science Bulletin 45 841–847.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • Suryendu Dutta
    • 1
  • Michael Steiner
    • 2
  • Santanu Banerjee
    • 1
  • Bernd-Dietrich Erdtmann
    • 2
  • Silambuchelvan Jeevankumar
    • 1
  • Ulrich Mann
    • 3
  1. 1.Department of Earth SciencesIndian Institute of Technology BombayMumbaiIndia
  2. 2.Technische Universität BerlinBerlinGermany
  3. 3.Sedimentäre SystemeForschungszentrum Jülich, Institut für Chemie und Dynamik der GeosphäreJülichGermany

Personalised recommendations