Advertisement

Journal of Biosciences

, Volume 23, Issue 2, pp 101–110 | Cite as

Organization and copy number of initiator tRNA genes in slow- and fast-growing mycobacteria

  • M. Vasanthakrishna
  • N. Rumpal
  • U. Varshney
Article

Abstract

We have previously reported the isolation and characterization of a functional initiator tRNA gene,metA, and a second initiator tRNA-like sequence,metB, fromMycobacterium tuberculosis. Here we describe the fine mapping of the initiator tRNA gene locus of the avirulent (H37Ra) and virulent (H37Rv) strains ofM. tuberculosis. The genomic blot analyses show that the 1.7 kb (harbouringmetE) and the 6.0 kb BamHI (harbouringmetA) fragments are linked. Further, sequencing of a portion of the 6.0kb fragment, in conjunction with the sequence of the 1.7 kb fragment confirmed the presence of an IS6110 element in the vicinity ofmetB. The IS element is flanked by inverted (28 bp, with 3 contiguous mismatches in the middle) and direct (3 bp) repeats considered to be the hallmarks of IS6110 integration sites. The organization of the initiator tRNA gene locus is identical in both the H37Ra and H37Rv strains and they carry a single copy of the functional initiator tRNA gene. Interestingly, the fast growingMycobacterium smegmatis also bears a single initiator tRNA gene. This finding is significant in view of the qualitative differences in total tRNA pools and the copy number of rRNA genes in the fast- and slow-growing mycobacteria. Finally, we discuss hypotheses related to the origin ofmetB inM. tuberculosis.

Keywords

metA metB 1S6110 integrative elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bercovier H, Kafri O and Sela S 1986 Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome;Biochem. Biophys. Res. Commun. 136 1136–1141PubMedCrossRefGoogle Scholar
  2. Bhargava S, Tyagi A K and Tyagi J S 1990 tRNA genes in mycobacteria: organization and molecular cloning;J. Bacteriol. 172 2930–2934PubMedGoogle Scholar
  3. Bremer H and Dennis P P 1987 Modulation of chemical composition and other parameters of the cell growth rate; inEscherichia coli and Salmonella typhimurium: Cellular and molecular biology (eds) P C Neiddhardt, J L Ingraham, K B Low, B Magasanik, M Schaechter and H E Umbarger (Washington DC: American Society for Microbiology) pp 1527–1542Google Scholar
  4. Chaconas Gand van de Sande J H 1980 5′-32P labeling of RNA and DNA restriction fragments;Methods Enzymol. 65 75–85PubMedGoogle Scholar
  5. Clark-Curtis J E 1990 Genome structure of mycobacteria; inMolecular biology of the mycobacteria (ed.) J McPadden (London: Academic Press) pp 77–95Google Scholar
  6. Hauser M A and Scocca J J 1992 Site specific integration of theHaemophilus influenzae bacteriophage HP1;J. Biol. Chem. 267 6859–6864PubMedGoogle Scholar
  7. Inokuchi H and Yamao P 1995 Structure and expression of prokaryotic tRNA genes; intRNA structure biogenesis and function (eds) D Soil and U L RajBhandary (Washington DC: ASM Press) pp 17–30Google Scholar
  8. Ishii S, Kuroki K and Imamoto P 1984 tRNAf2met gene in the leader region of the nusA operon inEscherichia coli;Proc. Natl. Acad. Sci. USA 81 409–413PubMedCrossRefGoogle Scholar
  9. Ji Y E, Colston M J and Cox R A 1994a Nucleotide sequence and secondary structures of precursor 16S rRNA of slowgrowing mycobacteria;Microbiology 140 123–132PubMedGoogle Scholar
  10. Ji Y E, Colston M J and Cox R A 1994b The ribosomal RNA rrn operons of fast growing mycobacteria: primary and secondary structures and their relation torrn operons of pathogenic slow growers;Microbiology 140 2829–2840PubMedGoogle Scholar
  11. Kenri T, Imamoto P and Kano Y 1994 Three tandemly repeated structural genes encoding tRNA (fl Met) in themetZ operon ofEscherichia coli K-12;Gene 138 261–262PubMedCrossRefGoogle Scholar
  12. Maxam A M and Gilbert W A 1980 Sequencing endlabeled DNA with basespecific chemical cleavage;Methods EnzymoL 65 499–560PubMedCrossRefGoogle Scholar
  13. Mazodier P, Thomson C and Boccard P 1990 The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes;Mol. Gen. Genet. 222 431–434PubMedCrossRefGoogle Scholar
  14. Musser J M 1995 Antimicrobial agent resistance in mycobacteria: molecular genetics insights;Clin. Microbiol. Rev. 8 496–594PubMedGoogle Scholar
  15. Nagaraja V and Gopinathan K P 1980 Requirement of calcium ions in Mycobacteriophage 13 DNA infection and propagation;Arch. Microbiol. 124 249–254PubMedCrossRefGoogle Scholar
  16. Papp I, Dorgai L, Papp P, Jonas E, Olasz P and Orosz L 1993 The bacterial attachment site of the temperateRhizobium phage 16–3 overlaps the 3′ end of a putative proline tRNA gene;Mol. Gen. Genet. 240 258–264PubMedCrossRefGoogle Scholar
  17. Pelicic V, Jackson M, Reyrat J M, Jacobs W R Jr, Gicquel B and Guilhot C 1997 Efficient alle lic exchange and transposon mutagenesis inMycobacterium tuberculosis;Proc. Natl. Acad. Sci. USA 94 10955–10960PubMedCrossRefGoogle Scholar
  18. Philip W J, Poulet S, Eiglmeir K, Pascopella L, Balasubramanian B H, Bergh S, Bloom B R, Jacobs W R Jr and Cole S T 1996 An integrated map of the genome of the tubercle bacillusMycobacterium tuberculosis H37Rv and comparision withMycobacterium leprae;Proc. Natl. Acad. Sci. USA 93 3132–3137CrossRefGoogle Scholar
  19. Pierson III L S and Kahn M L 1987 Integration of satellite bacteriophage P4 inEscherichia coli DNA sequences of the phage and host regions involved in sitespecific recombination;I J. Mol. Bial. 196 487–496CrossRefGoogle Scholar
  20. Poulet S and Cole S T 1995 Repeated DNA sequences in mycobacteria;Arch. Microbiol. 163 79–86PubMedCrossRefGoogle Scholar
  21. Reed K C and Mann DA 1985 Rapid transfer of DNA from agarose gels to nylon membranes;Nucleic Acids Res. 13 7207–7221PubMedCrossRefGoogle Scholar
  22. Reiter W-D, Palm P and Yeats S 1989 Transfer RNA genes frequently serve as integration sites for procaryotic genetic elements;Nucleic Acids Res. 17 1907–1914PubMedCrossRefGoogle Scholar
  23. Rich A and RajBhandary U L 1975 Transfer RNA: Molecular structure sequence and properties;Annu. Rev. Biochem. 45 805–860CrossRefGoogle Scholar
  24. Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: A laboratory mannual 2nd edition (New York: Cold Spring Harbor Laboratory)Google Scholar
  25. Sanger F, Nicklen S and Coulson A R 1977 DNA sequencing with chainterminating inhibitors;Proc. Natl. Acad. Sci. USA 74 5463–5467PubMedCrossRefGoogle Scholar
  26. Shoemaker N B, Wang G R and Salyers A A 1996 TheBacteroides mobilizable element NBUI integrates into the 3′ end of a Leu-tRNA gene and has an integrase that is a member of the Lambda integrase family;J. Bacteriol. 178 3594–3600PubMedGoogle Scholar
  27. Sprinzl M, Hartman T, Weber J, Blank J and Zeidler R 1989 Compilation of tRNA sequences and sequences of tRNA genes;Nucleic Acids Res. 17 r1–rl72PubMedCrossRefGoogle Scholar
  28. Thierry D, Cave M D, Eisenach K D, Crawford J T, Bates J H, Gicquel B and Guelsdon J L 1990 IS6110 an IS-like element ofMycobacterium tuberculosis complex;Nucleic Acids Res. 18 188PubMedCrossRefGoogle Scholar
  29. Vani B R, Ramakrishnan T, Kuchino Y and Nishimura S 1984 Nucleotide sequence of initiator tRNA fromMycobacterium smegmatis;Nucleic Acids Res. 12 3933–3936PubMedCrossRefGoogle Scholar
  30. Vasanthakrishna M, Kumar N V and Varshney U 1997 Characterization of the initiator tRNA gene locus and identification of a strong promoter fromMycobacterium tuberculosis;Microbiology 143 3591–3598PubMedGoogle Scholar
  31. Vogtli M and Cohen S N 1992 The chromosomal integration site for theStreptomyces plasmid SLPI is a functional tRNA Tyr gene essential for cell viability;Mol. Microbiol. 6 3041–3050PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  1. 1.Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia

Personalised recommendations