Skip to main content
Log in

Organization and copy number of initiator tRNA genes in slow- and fast-growing mycobacteria

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We have previously reported the isolation and characterization of a functional initiator tRNA gene,metA, and a second initiator tRNA-like sequence,metB, fromMycobacterium tuberculosis. Here we describe the fine mapping of the initiator tRNA gene locus of the avirulent (H37Ra) and virulent (H37Rv) strains ofM. tuberculosis. The genomic blot analyses show that the 1.7 kb (harbouringmetE) and the 6.0 kb BamHI (harbouringmetA) fragments are linked. Further, sequencing of a portion of the 6.0kb fragment, in conjunction with the sequence of the 1.7 kb fragment confirmed the presence of an IS6110 element in the vicinity ofmetB. The IS element is flanked by inverted (28 bp, with 3 contiguous mismatches in the middle) and direct (3 bp) repeats considered to be the hallmarks of IS6110 integration sites. The organization of the initiator tRNA gene locus is identical in both the H37Ra and H37Rv strains and they carry a single copy of the functional initiator tRNA gene. Interestingly, the fast growingMycobacterium smegmatis also bears a single initiator tRNA gene. This finding is significant in view of the qualitative differences in total tRNA pools and the copy number of rRNA genes in the fast- and slow-growing mycobacteria. Finally, we discuss hypotheses related to the origin ofmetB inM. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bercovier H, Kafri O and Sela S 1986 Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome;Biochem. Biophys. Res. Commun. 136 1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Bhargava S, Tyagi A K and Tyagi J S 1990 tRNA genes in mycobacteria: organization and molecular cloning;J. Bacteriol. 172 2930–2934

    PubMed  CAS  Google Scholar 

  • Bremer H and Dennis P P 1987 Modulation of chemical composition and other parameters of the cell growth rate; inEscherichia coli and Salmonella typhimurium: Cellular and molecular biology (eds) P C Neiddhardt, J L Ingraham, K B Low, B Magasanik, M Schaechter and H E Umbarger (Washington DC: American Society for Microbiology) pp 1527–1542

    Google Scholar 

  • Chaconas Gand van de Sande J H 1980 5′-32P labeling of RNA and DNA restriction fragments;Methods Enzymol. 65 75–85

    PubMed  CAS  Google Scholar 

  • Clark-Curtis J E 1990 Genome structure of mycobacteria; inMolecular biology of the mycobacteria (ed.) J McPadden (London: Academic Press) pp 77–95

    Google Scholar 

  • Hauser M A and Scocca J J 1992 Site specific integration of theHaemophilus influenzae bacteriophage HP1;J. Biol. Chem. 267 6859–6864

    PubMed  CAS  Google Scholar 

  • Inokuchi H and Yamao P 1995 Structure and expression of prokaryotic tRNA genes; intRNA structure biogenesis and function (eds) D Soil and U L RajBhandary (Washington DC: ASM Press) pp 17–30

    Google Scholar 

  • Ishii S, Kuroki K and Imamoto P 1984 tRNAf2met gene in the leader region of the nusA operon inEscherichia coli;Proc. Natl. Acad. Sci. USA 81 409–413

    Article  PubMed  CAS  Google Scholar 

  • Ji Y E, Colston M J and Cox R A 1994a Nucleotide sequence and secondary structures of precursor 16S rRNA of slowgrowing mycobacteria;Microbiology 140 123–132

    PubMed  CAS  Google Scholar 

  • Ji Y E, Colston M J and Cox R A 1994b The ribosomal RNA rrn operons of fast growing mycobacteria: primary and secondary structures and their relation torrn operons of pathogenic slow growers;Microbiology 140 2829–2840

    PubMed  CAS  Google Scholar 

  • Kenri T, Imamoto P and Kano Y 1994 Three tandemly repeated structural genes encoding tRNA (fl Met) in themetZ operon ofEscherichia coli K-12;Gene 138 261–262

    Article  PubMed  CAS  Google Scholar 

  • Maxam A M and Gilbert W A 1980 Sequencing endlabeled DNA with basespecific chemical cleavage;Methods EnzymoL 65 499–560

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Thomson C and Boccard P 1990 The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes;Mol. Gen. Genet. 222 431–434

    Article  PubMed  CAS  Google Scholar 

  • Musser J M 1995 Antimicrobial agent resistance in mycobacteria: molecular genetics insights;Clin. Microbiol. Rev. 8 496–594

    PubMed  CAS  Google Scholar 

  • Nagaraja V and Gopinathan K P 1980 Requirement of calcium ions in Mycobacteriophage 13 DNA infection and propagation;Arch. Microbiol. 124 249–254

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Dorgai L, Papp P, Jonas E, Olasz P and Orosz L 1993 The bacterial attachment site of the temperateRhizobium phage 16–3 overlaps the 3′ end of a putative proline tRNA gene;Mol. Gen. Genet. 240 258–264

    Article  PubMed  CAS  Google Scholar 

  • Pelicic V, Jackson M, Reyrat J M, Jacobs W R Jr, Gicquel B and Guilhot C 1997 Efficient alle lic exchange and transposon mutagenesis inMycobacterium tuberculosis;Proc. Natl. Acad. Sci. USA 94 10955–10960

    Article  PubMed  CAS  Google Scholar 

  • Philip W J, Poulet S, Eiglmeir K, Pascopella L, Balasubramanian B H, Bergh S, Bloom B R, Jacobs W R Jr and Cole S T 1996 An integrated map of the genome of the tubercle bacillusMycobacterium tuberculosis H37Rv and comparision withMycobacterium leprae;Proc. Natl. Acad. Sci. USA 93 3132–3137

    Article  Google Scholar 

  • Pierson III L S and Kahn M L 1987 Integration of satellite bacteriophage P4 inEscherichia coli DNA sequences of the phage and host regions involved in sitespecific recombination;I J. Mol. Bial. 196 487–496

    Article  CAS  Google Scholar 

  • Poulet S and Cole S T 1995 Repeated DNA sequences in mycobacteria;Arch. Microbiol. 163 79–86

    Article  PubMed  CAS  Google Scholar 

  • Reed K C and Mann DA 1985 Rapid transfer of DNA from agarose gels to nylon membranes;Nucleic Acids Res. 13 7207–7221

    Article  PubMed  CAS  Google Scholar 

  • Reiter W-D, Palm P and Yeats S 1989 Transfer RNA genes frequently serve as integration sites for procaryotic genetic elements;Nucleic Acids Res. 17 1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Rich A and RajBhandary U L 1975 Transfer RNA: Molecular structure sequence and properties;Annu. Rev. Biochem. 45 805–860

    Article  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: A laboratory mannual 2nd edition (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Sanger F, Nicklen S and Coulson A R 1977 DNA sequencing with chainterminating inhibitors;Proc. Natl. Acad. Sci. USA 74 5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker N B, Wang G R and Salyers A A 1996 TheBacteroides mobilizable element NBUI integrates into the 3′ end of a Leu-tRNA gene and has an integrase that is a member of the Lambda integrase family;J. Bacteriol. 178 3594–3600

    PubMed  CAS  Google Scholar 

  • Sprinzl M, Hartman T, Weber J, Blank J and Zeidler R 1989 Compilation of tRNA sequences and sequences of tRNA genes;Nucleic Acids Res. 17 r1–rl72

    Article  PubMed  CAS  Google Scholar 

  • Thierry D, Cave M D, Eisenach K D, Crawford J T, Bates J H, Gicquel B and Guelsdon J L 1990 IS6110 an IS-like element ofMycobacterium tuberculosis complex;Nucleic Acids Res. 18 188

    Article  PubMed  CAS  Google Scholar 

  • Vani B R, Ramakrishnan T, Kuchino Y and Nishimura S 1984 Nucleotide sequence of initiator tRNA fromMycobacterium smegmatis;Nucleic Acids Res. 12 3933–3936

    Article  PubMed  CAS  Google Scholar 

  • Vasanthakrishna M, Kumar N V and Varshney U 1997 Characterization of the initiator tRNA gene locus and identification of a strong promoter fromMycobacterium tuberculosis;Microbiology 143 3591–3598

    PubMed  CAS  Google Scholar 

  • Vogtli M and Cohen S N 1992 The chromosomal integration site for theStreptomyces plasmid SLPI is a functional tRNA Tyr gene essential for cell viability;Mol. Microbiol. 6 3041–3050

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasanthakrishna, M., Rumpal, N. & Varshney, U. Organization and copy number of initiator tRNA genes in slow- and fast-growing mycobacteria. J Biosci 23, 101–110 (1998). https://doi.org/10.1007/BF02703001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703001

Keywords

Navigation