Journal of Biosciences

, Volume 8, Issue 3–4, pp 791–798 | Cite as

Prediction of secondary structures of 16S and 23S rRNA fromEscherichia coli

  • A. S. Kolaskar
  • T. A. Thanaraj
  • M. W. Pandit


Small and large subunits ofEscherichia coli ribosome have three different rRNAs, the sequences of which are known. However, attempts by three groups to predict secondary structures of 16S and 23S rRNAs have certain common limitations namely, these structures are predicted assuming no interactions among various domains of the molecule and only 40% residues are involved in base pairing as against the experimental observation of 60 % residues in base paired state. Recent experimental studies have shown that there is a specific interaction between naked 16S and 23S rRNA molecules. This is significant because we have observed that the regions (oligonucleotides of length 9–10 residues), in 16S rRNA which are complementary to those in 23S rRNA do not have internal complementary sequences. Therefore, we have developed a simple graph theoretical approach to predict secondary structures of 16S and 23S rRNAs. Our method for model building not only uses complete sequence of 16S or 23S rRNA molecule along with other experimental observations but also takes into account the observation that specific recognition is possible through the complementary sequences between 16S and 23S rRNA molecules and, therefore, these parts of the molecules are not used for internal base pairing. The method used to predict secondary structures is discussed. A typical secondary structure of the complex between 16S and 23S rRNA molecules, obtained using our method, is presented and compared Briefly with earlier model Building studies.


RNA secondary structure 16S-23S RNA complex nucleic acid-nucleic acid interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Branlant, C., Krol, A., Machatt, M. A., Pouyet, J., Ebel, J. P., Edwards, K. and Kossel, H. (1981)Nucleic Acids Res.,9, 4303.PubMedCrossRefGoogle Scholar
  2. Brosius, J., Dull, T. J. and Noller, H. F. (1980)Proc. Natl Acad. Sci. USA,77, 201.PubMedCrossRefGoogle Scholar
  3. Brosius, J., Palmer, M. L., Kennedy, P. J. and Noller, H. F. (1978)Proc. Natl. Acad. Sci. USA,75, 4801.PubMedCrossRefGoogle Scholar
  4. Burma, D. P., Nag, B. and Tewari, D. S. (1983)Proc. Natl. Acad. Sci. USA,80, 4875.PubMedCrossRefGoogle Scholar
  5. Fox, G. and Woese, C. R. (1975)Nature (London),256, 505.CrossRefGoogle Scholar
  6. Glotz, C., Zwieb, C., Brimacombe, R., Edwards, K. and Kossel, H. (1981)Nucleic Acids, Res.,9, 3287.CrossRefGoogle Scholar
  7. Maly, P. and Brimacombe, R. (1983)Nucleic Acids Res.,11, 7263.PubMedCrossRefGoogle Scholar
  8. Noller, H. F., Kop, J., Wheaton, V., Brosius, J., Gutell, R. R., Kopylov, A. M, Dohme, F., Herr, W., Stahl, D. A., Gupta, R. and Woese, C. R. (1981)Nucleic Acids Res.,9, 6167.PubMedCrossRefGoogle Scholar
  9. Noller, H. F. and Woese, C. R. (1981)Science,212, 403.PubMedCrossRefGoogle Scholar
  10. Novotny, J., Bruccoleri, R. and Karplus, M. (1984)J. Mol. Biol.,177, 787.PubMedCrossRefGoogle Scholar
  11. Nussinov, R. and Jacobson, A. B. (1980)Proc. Natl. Acad. Sci. USA,77, 6309.PubMedCrossRefGoogle Scholar
  12. Nussinov, R. and Pieczenik, G. (1984)J. Theor. Biol.,106, 245.PubMedCrossRefGoogle Scholar
  13. Stiegler, P., Carbon, P., Zuker, M., EBel, J. P. and Ehresmann, C. (1981)Nucleic Acids Res.,9, 2153.PubMedCrossRefGoogle Scholar
  14. Zwieb, C., Glotz, C. and Brimacombe, R. (1981)Nucleic Acids Res.,9, 3621.PubMedCrossRefGoogle Scholar

Copyright information

© Printed in India 1985

Authors and Affiliations

  • A. S. Kolaskar
    • 1
  • T. A. Thanaraj
    • 1
  • M. W. Pandit
    • 1
  1. 1.Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations