Journal of Biosciences

, Volume 4, Issue 2, pp 227–237 | Cite as

Induction of riboflavin-carrier protein in the immature male rat by estrogen: Kinetic and hormonal specificity

  • C. V. Ramana Murty
  • P. R. Adiga


The kinetics of estrogen-induced accumulation of riboflavin-carrier protein in the plasma was investigated in immature male rats using a specific and sensitive homologous radio-immunoassay procedure developed for this purpose. Following a single injection of the steroid hormone, plasma riboflavin-carrier protein levels increased markedly after an initial lag period of approximately 24 h, reaching peak levels around 96 h and declining thereafter. A 1.5 fold amplification of the inductive response was evident on secondary stimulation with the hormone. The magnitude of the response was dependent on hormonal dose, whereas the initial lag phase and the time of peak riboflavin-carrier protein induction were unaltered within the range of the steroid doses (0.1–10 mg/ kg body wt.) tested. Simultaneous administration of progesterone did not affect either the kinetics or the maximum level of the protein induced. The hormonal specificity of this induction was further adduced by the effect of administration of antiestrogens viz., En and Zu chlomiphene citrates, which effectively curtailed hormonal induction of the protein. That the induction involvedde novo-protein synthesis was evident from the complete inhibition obtained upon administration of cycloheximide. Passive immunoneutralization of endogenous riboflavin-carrier protein with antiserum to the homologous protein terminated pregnancy in rats confirming the earlier results with antiserum to chicken riboflavin-carrier protein.


Riboflavin carrier protein radioimmunoassay estrogen induction specificity kinetics amplification antiestrogens secondary stimulation immunoneutralization pregnancy termination 

Abbreviations used


riboflavin-carrier protein


thiamine carrier protein


biotin carrier protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atew. R. F., Weinberger, M. J. and Eisenfeld, A. J. (1978)Endocrinology. 102, 433.CrossRefGoogle Scholar
  2. Dickson. R.B. and Eisenfeld, A. J. (1979)Biol. Rep.,21, 1105.CrossRefGoogle Scholar
  3. Eakin, R. E. Shell. E. E. and Williams, R. J. (1940)J. Biol. Chem.,136, 801.Google Scholar
  4. Greenwood, F. C., Hunter. H. M. and Glover, J.S. (1963)Biochem. J..89, 114.PubMedGoogle Scholar
  5. Gruber, M., Bos E. S. and Ab G. (1976)Mol. Cell Endocrinol.,5, 41.PubMedCrossRefGoogle Scholar
  6. Hayward, M. A., Mitchell, T. A. and Shapiro, D. J. (1981)J. Biol. Sci.,255, 11308.Google Scholar
  7. Jost, J. P.,Ohno, T., Panyim, S. and Schuerch, A. R. (1978)Eur. J. Biochem.,84, 355.PubMedCrossRefGoogle Scholar
  8. Lazier, C. B. and Haggarty, A. J. (1979)Biochem. J.,180, 347.PubMedGoogle Scholar
  9. Maw, A. J. G. (1954)Poult. Sci.,33, 216.Google Scholar
  10. Mohla, S. and Prasad, M. R. N. (1969)Acta Endocrinol (Copenhagen),62, 489.Google Scholar
  11. Moudgal, N. R. and Madhwaraj, H. G. (1974) inMethods in Hormone Radioimmunoassay, eds. B. M. Jaffe and H. R. Behrman (New York: Academic Press) pp. 57–85.Google Scholar
  12. Mulholland, H. and Jones, C. R. (1968)Fundamentals of Statistics, (London: The English Language Book Society and Butter-Worths) pp. 139–156.Google Scholar
  13. Muniyappa, K. and Adiga, P. R. (1980a)Biochem. J.,186, 201.PubMedGoogle Scholar
  14. Muniyappa, K. and Adiga, P. R. (1980b)FEBS Lett.,110, 209.PubMedCrossRefGoogle Scholar
  15. Muniyappa, K. and Adiga, P. R. (1980c)Biochem. J.,187, 537.PubMedGoogle Scholar
  16. Muniyappa, K. and Adiga, P. R. (1981)Biochem. J.,193, 679.PubMedGoogle Scholar
  17. Murty, C. V. R. and Adiga, P. R. and Adiga, P. R. (1980)Indian J. Biochem. Biophys.,17, 102.Google Scholar
  18. Murthy, C. V. R. and Adiga, P. R. (1981)FEBS Lett.,135, 281.CrossRefGoogle Scholar
  19. Murthy, U. S. and Adiga, P. R. (1977)Indian J. Biochem. Biophys.,14, 118.PubMedGoogle Scholar
  20. Murthy, U. S. and Adiga, P. R. (1978)Biochim. Biophys. Acta,538, 364.PubMedGoogle Scholar
  21. Palmiter, R. D., Mulvihill, E. R., Shepherd, J. H. and McKnight, G. S. (1981)J. Biol. Chem.,256, 7910.PubMedGoogle Scholar
  22. Palmitter, R. D. and Wrenn, J. I. (1971)J. Cell Biol.,50, 598.CrossRefGoogle Scholar
  23. Rhodes, M. B., Bennet. N. S. and Feeney, R. E. (1959)J. Biol. Chem.,234, 2054.PubMedGoogle Scholar
  24. Seal, U. S. and Doe, R. P. (1969) inMetabolic Effects of Gonadal Hormones and Contraceptive Steroids, eds. H. A. Salhanick, D. M. Kipsis and R. L. Vande (New York: Wiele-Plenum Press) pp. 277–318.Google Scholar
  25. Seo, H., Refetoff, S., Vassart, G. and Brocas, H. (1979)Proc. Natl. Acad. Sci. (U.S.A.),76, 824.CrossRefGoogle Scholar
  26. Tata, J. R. (1976)Cell,9, 1.PubMedCrossRefGoogle Scholar
  27. White, H. B., Dennison, B. A., Ferra, M.-A.D., Whitney, C. J., McGuire, J. C., Meslar, H. W. and Sammelwitz, P. H. (1976)Biochem. J.,157, 395.PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 1982

Authors and Affiliations

  • C. V. Ramana Murty
    • 1
  • P. R. Adiga
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangalore

Personalised recommendations