Journal of Biosciences

, Volume 9, Issue 3–4, pp 203–212 | Cite as

Prediction and comparison of the secondary structure of legume lectins

  • M. Joginadha Swamy
  • M. Venkata Krishna Sastry
  • Avadhesha Surolia


Secondary structure prediction for the 4 legume lectins: Concanavalin A, soybean agglutinin, favabean lectin and lentil lectin, was done by the method of Chou and Fasman. This prediction shows that these four lectins fall into a structurally distinct class of proteins, containing high amounts of β-sheet and β-turns. There is a notable similarity in the gross structure of these proteins; all four of them contain about 40–50% of β-sheet, 35–45 % β-turn and 0–10% of α-helix. When the secondary structure of corresponding residues in each pair of these lectins was compared, there was a striking similarity in the Concanavalin A-soybean agglutinin and favabean lectin-lentil lectin pairs, and considerably less similarity in the other pairs, suggesting that these legume lectins have probably evolved in a divergent manner from a common ancestor. A comparison of the predicted potential β-turn sites also supports the hypothesis of divergent evolution in this class of lectins.


Secondary structure prediction legume lectins divergent evolution β-turns 

Abbreviations used


Lentil lectin

Con A

Concanavalin A


circular dichroism


soybean agglutinin


favabean lectin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barondes, S. H. (1981)Ann. Rev. Biochem.,50, 207.PubMedCrossRefGoogle Scholar
  2. Chou, P. Y. and Fasman, G. D. (1974a)Biochemistry,13, 215.Google Scholar
  3. Chou, P. Y. and Fasman, G. D. (1974b)Biochemistry,13, 222.PubMedCrossRefGoogle Scholar
  4. Chou, P. Y. and Fasman, G. D. (1978)Adv. Enzymol.,47, 45.PubMedGoogle Scholar
  5. Chou, P. Y. and Fasman, G. D. (1979a)Biophys. J.,26, 367.PubMedCrossRefGoogle Scholar
  6. Chou, P. Y. and Fasman, G. D. (1979b)Biophys. J.,26, 385.PubMedGoogle Scholar
  7. Edelman, G. M., Cunningham, B. A., Reeke, G. N., Jr., Becker, J. W., Waxdal, M. J. and Wang, J. L. (1972)Proc. Natl. Acad: Sci. USA,69, 2580.CrossRefGoogle Scholar
  8. Foriers, A., Lebrun, E., van Rapenbusch, H., deNeve, N. and Strosberg, A.D. (1981)J.Biol. Chem.,256, 5550.PubMedGoogle Scholar
  9. Goldstein, I. J. and Hayes, C. E. (1978)Adv. Carbohydr. Chem. Biochem.,35, 127.PubMedGoogle Scholar
  10. Hemperly, J. J. and Cunningham, B. A. (1983)Trends Biochem. Sci.,8, 100.CrossRefGoogle Scholar
  11. Hopp, T. P., Hemperly, J. J. and Cunningham, B. A. (1982)J. Biol. Chem.,257, 4473.PubMedGoogle Scholar
  12. Jirgensons, B. (1978)Biochim. Biophys. Acta,536, 205.PubMedGoogle Scholar
  13. Lis, H. and Sharon, N. (1973)Ann. Rev. Biochem.,42, 541.PubMedCrossRefGoogle Scholar
  14. McCubbin, W. D., Oikawa, K. and Kay, G. M. (1971)Biochem. Biophys. Res. Commun.,43, 666.PubMedCrossRefGoogle Scholar
  15. Rapin, A. and Burger, M. M. (1974)Adv. Cancer Res.,20, 1.PubMedCrossRefGoogle Scholar
  16. Reeke, G. N., Jr., Becker, J. W. and Edelman, B. M. (1975)J. Biol. Chem.,250, 1525.PubMedGoogle Scholar
  17. Thomas, M. W., Rudzki, J. E., Walborg, E. F. and Jirgensons, B. (1979) inProceedings of the Symposium on Carbohydrate-Protein Interactions (ed. I. J. Goldstein) ACS Symposium series No. 88, pp. 67–75.Google Scholar
  18. Vodkin, L. O., Rhodes, P. R. and Goldberg, R. B. (1983)Cell,34, 1023.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • M. Joginadha Swamy
    • 1
  • M. Venkata Krishna Sastry
    • 1
  • Avadhesha Surolia
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations