Journal of Biosciences

, Volume 15, Issue 4, pp 329–339 | Cite as

Role of heme in mitochondrial biogenesis: Transcriptional and post-transcriptional regulation of the expression of Iso-I-cytochrome C gene during glucose repression-derepression in cells ofSaccharomyces cerevisiae

  • K. S. K. Balaji
  • G. Gopalan
  • C. Rajamanickam


Exogenous addition of hemin to glucose-repressed cells ofSaccharomyces cerevisiae restores the level of Iso-1-cytochrome C messengers to that observed in derepressed cells.In vitro transcription in isolated nuclei has shown a 4-fold stimulation in the synthesis of Iso-1-cytochrome C messengers in repressed but hemin-treated and derepressed cells compared to the repressed cells. Studies onin vitro transport of RNA from isolated nuclei have revealed that there is a 50% drop in the transport of total RNA from nuclei isolated from repressed but hemin-treated and derepressed cells when compared with the nuclei from repressed cells. However, under these conditions, there is an enhanced transport of translatable RNA. Hybridization analysis of the transported RNA using Iso-1-cytochrome C gene-specific probe has shown that there is preferential transport of Iso-1-cytochrome C messengers in repressed but hemin treated and derepressed cells.


Glucose repression-derepression transcription RNA transport heme Iso-1-cytochrome C gene 

Abbreviations used


Iso-1-cytochrome C


sodium dodecyl sulphate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie, D. S. (1979)Methods Enzymol.,56, 17.PubMedCrossRefGoogle Scholar
  2. Dharmalingam, K. and Jayaraman, J. (1971)Biochem. Biophys. Res. Commun.,45, 1115.PubMedCrossRefGoogle Scholar
  3. Duffus, J. H. (1979)Methods Cell Biol.,12, 79.Google Scholar
  4. Falcone, C, Agostinelli, M. and Frontali, L. (1983)J. Bacteriol.,153, 1125.PubMedGoogle Scholar
  5. Gopalan, G., Jayaraman, J. and Rajamanickam, C. (1984)Arch. Biochem. Biophys.,235, 159.PubMedCrossRefGoogle Scholar
  6. Gopalan, G. and Rajamanickam, C. (1985)Indian J. Biochem. Biophys.,22, 214.PubMedGoogle Scholar
  7. Gopalan, G. and Rajamanickam, C. (1986)Arch. Biochem. Biophys.,248, 210.PubMedCrossRefGoogle Scholar
  8. Guarente, L. and Mason, T. (1983)Cell,32, 1279PubMedCrossRefGoogle Scholar
  9. Hill, J. M. (1975)J. Cell Biol.,64, 620.CrossRefGoogle Scholar
  10. Jayaraman, J., Cotman, C, Mahler, H. R. and Sharp, C. W. (1966)Arch. Biochem. Biophys.,116, 224PubMedCrossRefGoogle Scholar
  11. Jerome, J. F. and Jaehning, J. A. (1986)Mol. Cell. Biol.,6, 1633.PubMedGoogle Scholar
  12. Johnson, L. F., Abelson, H. T., Green, H. and Penman, S. (1974)Cell,1, 95.CrossRefGoogle Scholar
  13. Kafatos,F. C. and Estradiadis, A. (1979)Nucleic Acids Res.,7, 1541.CrossRefGoogle Scholar
  14. Kiaf, D. R. and Warner, J. R. (1981)Mol. Cell. Biol.,1, 1007.Google Scholar
  15. Longacre, S. S. and Rutter, W. J. (1977)J. Biol. Chem.,252, 2742.PubMedGoogle Scholar
  16. Lowry, C. V. and Lieber, R. H. (1986)Mol. Cell. Biol.,6, 4145.PubMedGoogle Scholar
  17. Maniatis, T., Fristach, E. F. and Sambrook, J. (1982) inMolecular cloning: A laboratory manual (eds T. Maniatis, E. F. Fristsch and J. Sambrook) (New York: Cold Spring Harbor Laboratory) p. 164.Google Scholar
  18. Meenakshi, S., Thirunavukkarasu, C. and Rajamanickam, C. (1983)Biochem. J.,209, 285,PubMedGoogle Scholar
  19. Pelham, H, R. B. and Jackson, R. J. (1976)Eur. J. Biochem.,67, 247.PubMedCrossRefGoogle Scholar
  20. Penman, S. (1969) inFundamental techniques in virology (eds K. Habel and N. P. Salmon) (New York: Academic Press) p. 35.Google Scholar
  21. Perlman, P. S. and Mahler, H. R. (1974)Arch. Biochem. Biophys.,162, 248.PubMedCrossRefGoogle Scholar
  22. Pfeifer, K., Arcangioli, B. and Guarente, L. (1987)Cell,49, 9.PubMedCrossRefGoogle Scholar
  23. Pfeifer, K, Kim, K., Kogan, S. and Guarente, L. (1989)Cell,56, 291.PubMedCrossRefGoogle Scholar
  24. Polakis, E. S. and Bartley, W. (1965)Biochem. J.,97, 284.PubMedGoogle Scholar
  25. Rigby, P. W. J., Dieckman, M., Rhodes, C. and Berg, P. (1977)J. Mol. Biol.,113, 237.PubMedCrossRefGoogle Scholar
  26. Salditt-Georgieff, M., Harpold, M., Chen-Kiang, S. and Darnell, J. E. Jr. (1980)Cell,19, 69.PubMedCrossRefGoogle Scholar
  27. Schumm, D. E. and Webb, T. E. (1972)Biochem. Biophys. Res. Commun.,48, 1259.PubMedCrossRefGoogle Scholar
  28. Shapiro, D. J., Taylor, J. M., Mcknight, G. S., Polakis, R., Gonzales, C, Kiley, M. L. and Schimke, R. T. (1974)J. Biol. Chem.,249, 3665.PubMedGoogle Scholar
  29. Shearer, R. W. (1974)Biochemistry,13, 1764.PubMedCrossRefGoogle Scholar
  30. Spevak, W., Harting, A., Meindl, P. and Ruis, H. (1986)Mol. Gen. Genet.,203, 73.PubMedCrossRefGoogle Scholar
  31. Szykely, E. and Montgomery, D. L. (1984)Mol. Cell. Biol.,4, 439.Google Scholar
  32. Thomas, P. S. (1983)Methods Enzymol.,100, 256.Google Scholar
  33. Tzagoloff, A. (1969)J. Biol. Chem.,244, 5027.PubMedGoogle Scholar
  34. Zitomer, R. S., Montgomery, D. L., Nichols, D. L. and Hall, B. D. (1979)Proc. Natl. Acad. Sci. USA,76, 3627.PubMedCrossRefGoogle Scholar

Copyright information

© Printed in India 1990

Authors and Affiliations

  • K. S. K. Balaji
    • 1
  • G. Gopalan
    • 1
  • C. Rajamanickam
    • 1
  1. 1.Department of Biochemistry, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations