Journal of Biosciences

, Volume 29, Issue 1, pp 119–128 | Cite as

On the dependence of speciation rates on species abundance and characteristic population size

  • Anastassia M. Makarieva
  • Victor G. Gorshkov


The question of the potential importance for speciation of large/small population sizes remains open. We compare speciation rates in twelve major taxonomic groups that differ by twenty orders of magnitude in characteristic species abundance (global population number). It is observed that the twenty orders of magnitude’s difference in species abundances scales to less than two orders of magnitude’s difference in speciation rates. As far as species abundance largely determines the rate of generation of intraspecific endogenous genetic variation, the result obtained suggests that the latter rate is not a limiting factor for speciation. Furthermore, the observed approximate constancy of speciation rates in different taxa cannot be accounted for by assuming a neutral or nearly neutral molecular clock in subdivided populations. Neutral fixation is only relevant in sufficiently small populations with 4N ev < 1, which appears an unrealistic condition for many taxa of the smaller organisms. Further research is clearly needed to reveal the mechanisms that could equate the evolutionary pace in taxa with dramatically different population sizes


Extinction fixation molecular clock neutral theory population size species duration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton N and Charles Worth B 1984 Genetic revolutions, founder effects and speciation;Annu. Rev. Ecol. Syst. 15 133–164CrossRefGoogle Scholar
  2. Benton M J 1995 Diversification and extinction in the history of life;Science 268 52–58PubMedCrossRefGoogle Scholar
  3. Bourn D, Gibson C, Augeri D, Wilson C J, Church J and Hay S I 1999 The rise and fall of the Aldabran giant tortoise population;Proc. R. Soc. London B. 266 1091–1100CrossRefGoogle Scholar
  4. Bush G L, Case S M, Wilson A C and Patton J L 1977 Rapid speciation and chromosomal evolution in mammals;Proc. Natl. Acad. Sci. USA 74 3942–3946PubMedCrossRefGoogle Scholar
  5. Capriglione T, Olmo E, Odierna G, Improta B and Morescalchi A 1987 Cytofluorometric DNA base determination in vertebrate species with different genome sizes;Bas. Appl. Histochem. 31 119–126Google Scholar
  6. Chao L and Carr D E 1993 The molecular clock and the relationship between population size and generation time;Evolution 47 688–690CrossRefGoogle Scholar
  7. Cohen J E, Jonsson T and Carpenter S R 2003 Ecological community description using the food web, species abundance, and body size;Proc. Natl. Acad. Sci. USA 100 1781–1786PubMedCrossRefGoogle Scholar
  8. Cohn J P 1986 Surprising cheetah genetics;Bioscience 36 358–361CrossRefGoogle Scholar
  9. Conway Morris S 1998 The evolution of diversity in ancient ecosystems: A review;Philos. Trans. R. Soc. London B 353 327–345CrossRefGoogle Scholar
  10. Cornelissen A W C A, Overdulve J P and van derPloeg M 1984 Determination of nuclear DNA of five Eucoccidian parasites,Isospora (Toxoplasma) gondii, Sarcocystis cruzi, Eimeria tenella, E. acervulina andPlasmodium berghei, with special reference to gamontogenesis and meiosis in I. (T.) gondii;Parasitology 88 531–553PubMedCrossRefGoogle Scholar
  11. Courtillot V and Gaudemer Y 1996 Effects of mass extinctions on biodiversity;Nature (London) 381 146–148CrossRefGoogle Scholar
  12. Curtis H and Barnes N S 1989Biology 5th edition (New York: Worth Publishers)Google Scholar
  13. Darling K F, Wade C M, Stewart I A, Kroon D, Dingle R and Brown A J 2000 Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers;Nature (London) 405 43–47CrossRefGoogle Scholar
  14. de Vargas C, Norris R, Zaninetti L, Gibb S W and Pawlowski J 1999 Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces;Proc. Natl. Acad. Sci. USA 96 2864–2868PubMedCrossRefGoogle Scholar
  15. Dobzhansky Th G 1937Genetics and the origin of species (New York: Columbia University Press)Google Scholar
  16. Drake J W 1991 A constant rate of spontaneous mutation in DNA-based microbes;Proc. Natl. Acad. Sci. USA 88 7160–7164PubMedCrossRefGoogle Scholar
  17. Emiliani C 1993 Viral extinctions in deep-sea species;Nature (London) 366 217–218CrossRefGoogle Scholar
  18. Finlay B J and Clarke K J 1999 Apparent global ubiquity of species in the protist genus Paraphysomonas;Protist 150 419–430PubMedGoogle Scholar
  19. Gaedke U 1992 The size distribution of plankton biomass in a large lake and its seasonal variability;Limnol. Oceanogr. 37 1202–1220CrossRefGoogle Scholar
  20. Garcia-Vallvé S, Romeu A and Palau J 2000 Horizontal gene transfer of glycosyl hydrolases of the rumen fungi;Mol. Biol. Evol. 17 352–361PubMedGoogle Scholar
  21. Gaston K J 1996 Species-range-size distributions: Patterns, mechanisms and implications;Trends Ecol. Evol. 11 197–201CrossRefGoogle Scholar
  22. Gavrilets S, Li H and Vose M D 1998 Rapid parapatric speciation on holey adaptive landscapes;Proc. R. Soc. London B 265 1483–1489CrossRefGoogle Scholar
  23. Gillespie J H 1991The causes of molecular evolution (Oxford: Oxford University Press)Google Scholar
  24. Gorshkov V G 1995Physical and biological bases of life stability. Man, Biota, Environment (Berlin: Springer)Google Scholar
  25. Gorshkov V G, Gorshkov V V and Makarieva A M 2000Biotic regulation of the environment: Key issue of global change (London: Springer)Google Scholar
  26. Grabovik S I 1998 Ecological peculiarities of reproduction inSphagnum mosses;Bot. J. 88 92–97 (in Russian)Google Scholar
  27. Hallock P 1984 Distribution of selected species of living algal symbyont-bearing foraminifera on two Pacific coral reefs;J. Foram. Res. 14 250–261Google Scholar
  28. Hayes J M 1996 The earliest memories of life on Earth;Nature (London) 384 21–22CrossRefGoogle Scholar
  29. Juan C and Petitpierre E 1991 Evolution of genome size in darkling beetles (Tenebrionidae, Coleoptera);Genome 34 169–173Google Scholar
  30. Kimura M 1970 The length of time required for a selectively neutral mutant to reach fixation through random frequency drift in a finite population;Genet. Res. 15 131–133PubMedCrossRefGoogle Scholar
  31. Kimura M and Ohta T 1969 The average number of generations until fixation of a mutant gene in a finite population;Genetics 61 763–771PubMedGoogle Scholar
  32. Kimura M and Ohta T 1973 The age of a neutral mutant persisting in a finite population;Genetics 75 199–212PubMedGoogle Scholar
  33. Klaus W 1989 Mediterranean pines and their history;Plant Syst. Evol. 162 133–163CrossRefGoogle Scholar
  34. Konsuloff A 1976Zooplankton in the Black Sea along the Bulgarian Coast, Ph.D. thesis, Institute of Fisheries, VarnaGoogle Scholar
  35. Laird C D 1973 DNA ofDrosophila chromosomes;Annu. Rev. Genet. 7 177–204PubMedCrossRefGoogle Scholar
  36. Lanly J P and Allan T 1991 Overview of status and trends of world’s forests; inProceedings of the Technical Workshop to Explore Options for Global Forestry Management (eds) D Howlett and C Sargent (London: International Institute for Environment and Development) pp 17–39Google Scholar
  37. Li W-H 1997Molecular evolution (Sunderland: Sinauer Associates)Google Scholar
  38. Li Y J, Satta Y and Takahata N 1999 Paleo-demography of theDrosophila melanogaster subgroup: application of the maximum likelihood method;Genes Genet. Syst. 74 117–127PubMedCrossRefGoogle Scholar
  39. Marienfeld J R, Unseld M, Brandt P and Brennicke A 1997 Viral nucleic acid transfer between fungi and plants;Trends Genet. 13 260–261PubMedCrossRefGoogle Scholar
  40. May R M and Nee S 1995 The species alias problem;Nature (London) 378 447–448CrossRefGoogle Scholar
  41. Mayr E 1954 Change of genetic environment and evolution; inEvolution as a process (eds) J Huxley, A C Hardy and E B Ford (New York: Macmillan) pp 157–180Google Scholar
  42. Mayr E 1963Animal species and evolution (Cambridge: Harvard University Press)Google Scholar
  43. Mirsky A E and Ris H 1951 The desoxyribonucleic acid content of animal cells and its evolutionary significance;J. Gen. Physiol. 34 451–462PubMedCrossRefGoogle Scholar
  44. Nei M 1984 Genetic polymorphism and neomutationism;Lect. Notes Biomath. 53 214–241Google Scholar
  45. Nei M and Graur D 1984 Extent of protein polymorphism and the neutral mutation theory;Evol. Biol. 17 73–118Google Scholar
  46. O’Brien S J 1994 A role for molecular genetics in biological conservation;Proc. Natl. Acad. Sci. USA 91 5748–5755PubMedCrossRefGoogle Scholar
  47. Ochman H, Elwyn S and Moran N A 1999 Calibrating bacterial evolution;Proc. Natl. Acad. Sci. USA 96 12638–12643PubMedCrossRefGoogle Scholar
  48. Ohta T 1987 Very slightly deleterious mutations and the molecular clock;J. Mol. Evol. 26 1–6PubMedCrossRefGoogle Scholar
  49. Olmo E 1976 Genome size in some reptiles;J. Exp. Zool. 195 305–310CrossRefGoogle Scholar
  50. Orlov V N and Bulatova N Sh 1983Comparative cytogenetics and caryosystematics of mammals (Moscow: Nauka) (in Russian)Google Scholar
  51. Orr H A 1995 Somatic Mutation Favors the Evolution of Diploidy;Genetics 139 1441–1447PubMedGoogle Scholar
  52. Orr H A and Orr L H 1996 Waiting for speciation: the effect of population subdivision on the waiting time to speciation;Evolution 50 1742–1749CrossRefGoogle Scholar
  53. Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski R Eand Blot M 1999 Genomic evolution during a 10,000generation experiment with bacteria;Proc. Natl. Acad. Sci. USA 96 3807–3812PubMedCrossRefGoogle Scholar
  54. Petitpierre E, Segarra C and Juan C 1993 Genome size and chromosomal evolution in leaf beetles (Coleoptera, Chrysomelidae);Hereditas 119 1–6CrossRefGoogle Scholar
  55. Raup D M 1991a A kill curve for Phanerozoic marine species;Paleobiology 17 37–48PubMedGoogle Scholar
  56. Raup D M 1991bExtinction: bad genes or bad luck? (New York: Norton)Google Scholar
  57. Raup D M and Sepkoski J J Jr 1982 Mass extinctions in the marine fossil records;Science 215 1501–1503PubMedCrossRefGoogle Scholar
  58. Sannikov S N 1992Ecology and geography of natural regeneration of Skots pine (Moscow: Nauka) (in Russian)Google Scholar
  59. Schmidt J L, Deming J W, Jumars P A and Keil R G 1998 Constancy of bacterial abundance in surficial marine sediments;Limnol. Oceanogr. 43 976–982CrossRefGoogle Scholar
  60. Sepkoski J J Jr 1998 Rates of speciation in the fossil record;Philos. Trans. R. Soc. London B 353 315–326CrossRefGoogle Scholar
  61. Sheldon R W, Prakash A and Sutcliffe W H Jr 1972 The size distribution of particles in the ocean;Limnol. Oceanogr. 17 327–340Google Scholar
  62. Sieburth J M 1976 Bacterial substrates and productivity in marine ecosystems;Annu. Rev. Ecol. Syst. 7 259–285CrossRefGoogle Scholar
  63. Sokolov S Ja and Svyazeva O A 1965Geography of trees in the USSR (Moscow: Nauka) (in Russian)Google Scholar
  64. Stackenbrandt E and Goebel B 1994 Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology;Int. J. Syst. Bacteriol. 44 846–849Google Scholar
  65. Stanley S M 1979Macroevolution: pattern and process (San Francisco: Freeman)Google Scholar
  66. Stanley S M 1985 Rates of evolution;Paleobiology 11 13–26Google Scholar
  67. ]Van Valen L 1973 A new evolutionary law;Evolutionary Theory 1 1–30Google Scholar
  68. Voglmayr H 2000 Nuclear DNA amounts in Mosses (Musci);Ann. Bot. 85 531–546CrossRefGoogle Scholar
  69. Wakamiya I, Newton R J, Jonston J S and Price H J 1993 Genome size and environmental factors in the genusPinus;Am. J. Bot. 80 1235–1241CrossRefGoogle Scholar
  70. Whitman W B, Coleman D C and Wiebe W J 1998 Prokaryotes: The unseen majority;Proc. Natl. Acad. Sci. USA 95 6578–6583PubMedCrossRefGoogle Scholar
  71. Whittaker R H and Likens G E 1975 The biosphere and man; inPrimary productivity of the biosphere (eds) H Lieth and R Whittaker (Berlin: Springer) pp 305–328Google Scholar
  72. Witek Z and Krajewska-Soltys A 1989 Some examples of the epipelagic plankton size structure in high latitude oceans;J. Plankton Res. 11 1143–1155CrossRefGoogle Scholar
  73. Wright S 1931 Evolution in Mendelian populations;Genetics 16 97–159PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  1. 1.Theoretical Physics DivisionPetersburg Nuclear Physics InstituteGatchinaRussia

Personalised recommendations