Advertisement

International Applied Mechanics

, Volume 34, Issue 8, pp 703–728 | Cite as

Nonlinear problems of the vibration of thin shells (review)

  • V. D. Kubenko
  • P. S. Koval’chuk
Article

Keywords

Cylindrical Shell Nonlinear Vibration Dynamic Instability Forced Vibration Shallow Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ya Ainola and U. Nigul, “Wave processes in the deformation of elastic slabs and shells,”Izv. EstSSR Ser. Fiz. Mat. i Tekh. Nauk,14, No. 1, 3–63 (1965).MathSciNetGoogle Scholar
  2. 2.
    N. K. Alekseeva, “Forced and parametric vibrations of shallow shells,”Stroit. Mekh. Raschet Sooruzh., No. 5, 46–49 (1969).Google Scholar
  3. 3.
    N. K. Alekseeva, “Dynamic stability of shallow shells,”Prikl. Mekh.,5, No. 12, 60–68 (1969).Google Scholar
  4. 4.
    N. A. Alumyae, “Transients in the deformation of elastic shells and plates,” Tr. VI All-Union Conf. on the Theory of Plates and Shells, Nauka, Moscow (1966), pp. 833–889.Google Scholar
  5. 5.
    S. A. Ambartsumyan,General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).Google Scholar
  6. 6.
    S. A. Ambartsumyan, G. E. Bagdasaryan, and V. Ts. Gnuni, “Certain dynamic problems of three-layer shells,” in:Theory of Plates and Shells [in Russian], Izd. An Ukr. SSR, Kiev (1962).Google Scholar
  7. 7.
    I. Ya Amiro and V. A. Zarutskii, “Studies of the dynamics of ribbed shells,”Prikl. Mekh.,17, No. 11, 3–20 (1981).Google Scholar
  8. 8.
    I. Ya Amiro and V. A. Zarutskii, “Statics, dynamics, and stability of ribbed shells,”Itogi Nauki Tekh. Mekh. Tverd. Deform. Tela,21, 132–191 (1990).MathSciNetGoogle Scholar
  9. 9.
    I. Ya. Amiro, V. A. Zarutskii, and V. G. Palamarchuk,Dynamics of Ribbed Shells [in Russian], Nauk. Dumka, Kiev (1983).Google Scholar
  10. 10.
    I. Ya Amiro, V. A. Zarutskii, V. N. Revutskii, et al.,Vibrations of Ribbed Shells of Revolution [in Russian], Nauk. Dumka, Kiev (1988).Google Scholar
  11. 11.
    R. Archerand S. Lang, “Nonlinear dynamic behavior of shallow spherical shells,”AIAA J., No. 2, 30–36 (1969).Google Scholar
  12. 12.
    M. M. Askarov and P. S. Koval’chuk, “Determination of the nonlinear dissipative characteristics of deformable systems from analysis of parametriccally excited vibrations,”Dynamic Equilibrium, Vibrations, and Stability of Motion: Inter-Institute Scientific Symposium, Ufa (1976), Vol. 5, pp. 88–99.Google Scholar
  13. 13.
    G. E. Bagdasaryan and V. Ts. Gnuni, “Toward a theory of the dynamic stability of laminated anisotropic shells of revolution,”Izv. Akad. Nauk Arm. SSR Ser. Fiz. Mat. Nauk,13, No. 5, 27–36 (1960).MATHGoogle Scholar
  14. 14.
    G. E. Bagdasaryan and V. Ts. Gnuni, “Resonance in forced nonlinear vibrations of laminated anisotropic shells,”Izv. Akad. Nauk Arm. SSR Ser. Fiz. Mat. Nauk,14, No. 1, 27–31 (1961).Google Scholar
  15. 15.
    G. E. Bagdasaryan and V. Ts. Gnuni, “Dynamic stability of an anisotropic closed cylindrical shell,”Izv. Akad. Nauk Arm. SSR Ser. Fiz. Mat. Nauk,41, No. 5, 278–281 (1965).Google Scholar
  16. 16.
    F. B. Badalov, G. Sh. Shadmanov, and N. Yu. Khuzhayarov, “Vibrations of viscoelastic plates and shallow shells with physically and geometrically nonlinear characteristics,” in:Mechanics of Deformable Solids [in Russian], Fan, Tashkent (1981), pp. 35–42.Google Scholar
  17. 17.
    F. B. Badalov, Kh. Eshmatov, and B. Anzhiev, “Study of physically and geometrically nonlinear vibrations of viscoelastic plates and shells by the averaging method,”Prikl. Mekh. 21, No. 3, 61–68 (1985).Google Scholar
  18. 18.
    A. A. Berezovskii and Yu. I. Zharii,Nonlinear Boundary-Value Problems in the Theory of Flexible Plates and Shallow Shells [in Russian], Izd. In-ta Matematiki An Ukr SSR, Kiev (1970).Google Scholar
  19. 19.
    A. E. Bogdanovich,Nonlinear Problems of the Dynamics of Cylindrical Composite Shells [in Russian], Zinatne, Riga (1987).MATHGoogle Scholar
  20. 20.
    A. E. Bogdanovich and E. G. Feldmane, “Calculation of nonlinear parametric vibrations of cylindrical shells,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 1, 171–177(1979).Google Scholar
  21. 21.
    A. E. Bogdanovich and E. G. Feldmane, “Nonlinear parametric vibrations of viscoelastic orthotropic cylindrical shells,”Prikl. Mekh.,16, No. 4, 49–55 (1980).Google Scholar
  22. 22.
    N. N. Bogolyubov and Yu. A. Mitropol’skii,Asymptotic Methods in the Theory of Nonlinear Vibrations [in Russian], Nauka, Moscow (1974).Google Scholar
  23. 23.
    V. V. Bolotin,Dynamic Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  24. 24.
    V. V. Bolotin, “Numerical analysis of the stability of linear differential equations with periodic coefficients,”Selected Problems of Applied Mechanics (On the Occasion of the 60th Birthday of Academician V. N. Chelomei), VINITI, Moscow (1974), pp. 155–166.Google Scholar
  25. 25.
    V. V. Bolotin, “Dynamic stability of distributed systems,” in:Vibrations in Engineering [in Russian], Vol. 1, Mashinostroenie, Moscow (1978), pp. 240–256.Google Scholar
  26. 26.
    V. V. Bolotin and Yu. N. Novichkov,Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980).Google Scholar
  27. 27.
    A. A. Bondarenko and P. I. Galaka, “Parametric instability of cylindrical glass-plastic shells,”Prikl. Mekh.,13, No. 4, 124–128 (1977).Google Scholar
  28. 28.
    A. A. Bondarenko, P. I. Galaka, and A. I. Nosachenko, “Damping of vibrations in cylindrical glass-plastic shells,”Prikl. Mekh.,5, No. 9, 121–124 (1969).Google Scholar
  29. 29.
    A. A. Bondarenko and P. S. Koval’chuk, “Determination of nonlinear drag in vibrations of mechanical systems,”Prikl. Mekh.,13, No. 7, 104–109 (1977).Google Scholar
  30. 30.
    A. A. Bondarenko, P. S. Koval’chuk, and A. I. Telalov, “Problem of determining the nonlinear dissipative characteristics of elastic systems by means of amplitude-phase frequency characteristics,” in:Energy Dissipation in Vibrations of Mechanical Systems [in Russian], Nauk. Dumka, Kiev (1978).Google Scholar
  31. 31.
    A. A. Bondarenko, P. S. Koval’chuk, and A. I. Telalov, “Studies of damping of the vibrations of thin-walled cylindrical shells,”Energy Dissipation in Vibrations of Mechanical Systems [in Russian], Nauk. Dumka, Kiev (1978) pp. 180–183.Google Scholar
  32. 32.
    A. A. Bondarenko and A. I. Telalov, “Dynamic instability of cylindrical shells subjected to longitudinal kinematic perturbations,”Prikl. Mekh.,18, No. 1, 57–61 (1982).Google Scholar
  33. 33.
    N. V. Valishvili,Computer Methods of Designing Shells of Revolution [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  34. 34.
    N. V. Valishvili and V. B. Silkin, “Use of the straight line method to solve nonlinear problems of the dynamics of shallow shells,”Mekh. Tverd. Tela, No. 3, 140–143 (1970).Google Scholar
  35. 35.
    V. V. Bolotin (editor),Vibrations in Engineering: Handbook [in Russian], Mashinostroenie, Moscow (1978).Google Scholar
  36. 36.
    V. Z. Vlasov,General Theory of Shells and Its Applications in Engineering [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  37. 37.
    A. S. Vol’mir,Flexible Plates and Shells [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  38. 38.
    A. S. Vol’mir,Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).Google Scholar
  39. 39.
    A. S. Vol’mir,Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).Google Scholar
  40. 40.
    A. S. Vol’mir,Shells in a Flow of Liquid and Gas. Problems of Aeroelasticity [in Russian], Nauka, Moscow (1976).Google Scholar
  41. 41.
    A. S. Vol’mir,Shells in a Flow of Liquid and Gas. Problems of Hydroelasticity [in Russian], Nauka, Moscow (1979).Google Scholar
  42. 42.
    A. S. Vol’mir and A. T. Ponomarev, “Nonlinear parametric vibrations of cylindrical shells made of composite materials,”Mekh. Polim., No. 3, 531–539 (1973).Google Scholar
  43. 43.
    I.I. Vorovich, “Bubnov-Galerkin method in the nonlinear theory of vibrations of shallow shells,”Dokl. Akad. Nauk SSSR,110, No. 5, 723–726 (1956).MATHMathSciNetGoogle Scholar
  44. 44.
    I.I. Vorovich,Mathematical Problems of the Nonlinear Theory of Shells [in Russian], Nauka, Moscow (1989).MATHGoogle Scholar
  45. 45.
    S. S. Gavryushin, “Numerical modeling and analysis of processes in the nonlinear deformation of flexible shells,”Izv. Rossiisk. Akad Nauk Mekh. Tverd Tela, No. 1, 109–119 (1994).Google Scholar
  46. 46.
    S. S. Gavryushin and A. V. Korovaitsev,Computer Methods of Designing Structural Elements [in Russian], Izd. VZPI, Moscow (1991).Google Scholar
  47. 47.
    P. I. Galaka, P. S. Koval’chuk, V. D. Kubenko, et al., “Dissipative properties of cylindrical shells undergoing vibrations with large deflections,” in:Energy Dissipation in Vibrations of Mechanical Systems [in Russian], Nauk. Dumka, Kiev (1985), pp. 140–145.Google Scholar
  48. 48.
    P. I. Galaka, P. S. Koval’chuk, V.M. Mendelutsa, et al., “Dynamic instability of glass-plastic shells carrying concentrated masses,”Prikl. Mekh.,16, No. 8, 42–47 (1980).Google Scholar
  49. 49.
    P. I. Galaka, P. S. Koval’chuk, V. M. Mendelutsa, et al., “Experimental study of the nonlinear interaction of bending modes of vibration of cylindrical shells subjected to parametric excitation,”Probl. Mashinostr., No. 15, 33–38 (1981).Google Scholar
  50. 50.
    K. Z. Galimov,Principles of the Nonlinear Theory of Shells [in Russian], Izd. Kazan. Un-ta, Kazan (1975).Google Scholar
  51. 51.
    K. Z. Galimov,Theory of Shells with Allowance for Transverse Shear [in Russian], Izd. Kazan. Un-ta, Kazan (1977).Google Scholar
  52. 52.
    R.F. Ganiev and P.S. Koval’chuk,Dynamics of Systems of Rigid and Elastic Bodies [in Russian], Mashinostme, Moscow (1980).Google Scholar
  53. 53.
    R. E. Geizenblazen, “Certain aspects of the stability and vibration of cylindrical shells with an initial deflection,”Issled. Teor. Kolebonii i Dinamike Mostov: Tr. Dnepropetr. Inst. Inzh. Zheleznnodorozh. Transp., No. 6, 62–78 (1966).Google Scholar
  54. 54.
    R. E. Geizenblazen, “Stability and parametric vibrations of longitudinally corrugated cylindrical shells with initial imperfections,”Issled. Teor. Kolebanii i Dinamike Mostov: Tr. Dnepropetr. Inst. Inzh. Zheleznnodorozh. Transp., No. 64, 79–80 (1966).Google Scholar
  55. 55.
    R. E. Geizenblazen, “Limits of the dynamic instability of shallow shells,”Issled. Teor. Kolebanii i Dinamike Mostov: Tr. Dnepropetr. Inst. Inzh. Zheleznnodorozh. Transp., No. 73, 83–90 (1968).Google Scholar
  56. 56.
    M. S. Gershtein, “Vibrations of an elastic multilayer ring with large amplitudes,”Prikl. Mekh.,21, No. 7, 119–123 (1985).Google Scholar
  57. 57.
    M. S. Gershtein and S. S. Khalyuk, “Free vibrations of a multilayer shell,” Tr. XII Ail-Union Conf. on the Theory of Plates and Shells, Erevan (1980), Vol. 2, pp. 57–63.Google Scholar
  58. 58.
    M. S. Gershtein and S. S. Khalyuk, “Nonlinear vibrations of a single-span multilayer pipe,”Stroit. Ob ’ektov Neftyanoi i Gazovoi Promyshlennosti, No. 2, 19–24 (1981).Google Scholar
  59. 59.
    M. S. Gershtein and S. S. Khalyuk, “Theoretical and experimental study of nonlinear vibrations of multilayer shells,” Tr. XIII All-Union Conf. on the Theory of Plates and Shells, Tallin (1983), pp. 7–12.Google Scholar
  60. 60.
    V. Ts. Gnuni, “Toward a theory of the dynamic stability of laminated anisotropic shallow shells,”Izv. Akad. Nauk Arm. SSR Ser. Fiz. Mat. Nauk,13, No 1, 47–58 (1960).MathSciNetGoogle Scholar
  61. 61.
    V. Ts. Gnuni, “Toward a theory of the nonlinear dynamic instability of shells,”Izv. Akad. Nauk SSSR Otd. Tekh. Nauk Mekh. Mashinostr., No. 4, 181–192 (1961).Google Scholar
  62. 62.
    V. Ts. Gnuni, “Limits of the dynamic instability of shells,” Tr. of a All-Union Conf. on the Theory of Plates and Shells, Izd. Kazan. Un-ta, Kazan (1961), pp. 117–123.Google Scholar
  63. 63.
    V. Ts. Gnuni, “Parametrically excited vibrations of laminated anisotropic flexible shells,”Izv. Akad. Nauk Arm. SSR Ser. Fiz. Mat. Nauk,15, No. 3, 29–36 (1962).MATHGoogle Scholar
  64. 64.
    A. L. Gol’denveizer,Theory of Elastic Thin Shells [in Russian], Nauka, Moscow (1976).Google Scholar
  65. 65.
    A. L. Gol’denveizer, V. B. Lidskii, and P. E. Tovstik,Free vibrations of Thin Elastic Shells [in Russian], Nauka, Moscow (1979).Google Scholar
  66. 66.
    V. S. Gonkevich,Natural Vibrations of Plates and Shells [in Russian], Nauk. Dumka, Kiev (1964).Google Scholar
  67. 67.
    Yu. A. Gorbunov, “Experimental study of vibrations of cylindrical and spherical shells with a liquid in the presence of internal friction,” V All-Union Conf. on the Theory of Plates and Shells, Nauka, Moscow (1965), pp. 57–61.Google Scholar
  68. 68.
    E. A. Gotsulyak, V. I. Gulyaev, E. S. Dekhtyaryuk, et al., “Stability of nonlinear forced vibrations of spherical segments,”Sopr. Mater. Teor. Sooruzh., No. 38, 53–57 (1980).Google Scholar
  69. 69.
    E. A. Gotsulyak, V. I. Gulyaev, E. S. Dekhtyaryuk, et al., “Stability of nonlinear vibrations of shells of revolution,”Prikl. Mekh.,18, No. 6, 50–56 (1982).Google Scholar
  70. 70.
    E. I. Grigolyuk, “Nonlinear vibrations and stability of shallow shells and rods,”Izv. Akad. Nauk SSSR Mekh. Mashinostr., No. 3, 33–68 (1955).Google Scholar
  71. 71.
    E. I. Grigolyuk, “Vibrations of circular cylindrical panels subjected to finite deflections,”Prikl. Mat. Mekh.,19, No. 3, 376–382 (1955).MathSciNetMATHGoogle Scholar
  72. 72.
    E. I. Grigolyuk and V. V. Kabanov,Stability of Shells [in Russian], Nauka, Moscow (1978).Google Scholar
  73. 73.
    E. I. Grigolyuk and P. P. Chulkov,Stability and Vibrations of Three-Layer Shells [in Russian], Mashinostroenie, Moscow (1973).Google Scholar
  74. 74.
    Ya. M. Grigorenko and V. I. Gulyaev, “Nonlinear problems of the theory of shells and methods of solving them (survey),”27, No. 10, 3–23 (1991).MathSciNetGoogle Scholar
  75. 75.
    Ya. M. Grigorenko, V. I. Gulyaev, E. S. Dekhtyaryuk, et al., “Stability of nonlinear forced vibrations of shallow cylindrical shells that are rectangular in plan,”Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 6, 137–142 (1983).Google Scholar
  76. 76.
    Ya. M. Grigorenko and A. P. Mukoed,Solution of Nonlinear Problems of Shell Theory on a Computer [in Russian], Vishcha Shk., Kiev (1983).Google Scholar
  77. 77.
    N. F. Grishin and V. S. Kalinin, “Effect of initial imperfections on vibrations of plates and shells,” Theory of Plates and Shells: Transactions of the DC All-Union Conf. on the Theory of Plates and Shells, Sudostroenie, Leningrad (1975), pp. 175–179.Google Scholar
  78. 78.
    P. L. Grossman, J. Ewen, and B. Koplik, “Nonlinear vibrations of shallow spherical shells,”Trans. ASME, Prikl. Mekh., No. 3, 17–21 (1969).Google Scholar
  79. 79.
    A. N. Guz’, V. A. Zarutskii, I. Ya Amiro, et al., in:Experimental Studies of Thin-Walled Structures [in Russian], Nauk. Dumka, Kiev (1984).Google Scholar
  80. 80.
    A. N. Guz’, Ya M. Grigorenko, I. Yu. Babich, et al.,Mechanics of Structural Elements (Vol. 2 of the Mechanics of Composite Materials and Structural Elements) [in Russian], Nauk. Dumka, Kiev (1983).Google Scholar
  81. 81.
    A. N. Guz’ and V. D. Kubenko,Theory of the Transient Aerohydroelasticity of Shells (Vol. 5 ofMethods of Shell Design) [in Russian], Nauk. Dumka, Kiev (1982).Google Scholar
  82. 82.
    V. I. Gulayev, V. A. Bazhenov, E. A. Gotsulyak, et al.,Stability of Periodic Processes in Nonlinear Mechanical Systems [in Russian], Vishcha Shk, Lvov (1983).Google Scholar
  83. 83.
    V. I. Gulyaev, V. A. Bazhenov, and S. L. Popov,Practical Problems of the Theory of Nonlinear Vibrations of Mechanical Systems [in Russian], Visshaya Shk., Moscow (1989).Google Scholar
  84. 84.
    V. N. Denisov and N. I. Zhinzher, “Aysymptotic method in the problem of the nonlinear vibration of shells,”Probl. Prochn., No. 9, 27–30 (1983).Google Scholar
  85. 85.
    E. S. Dekhtyaryuk, Complex Modes of Steady Nonlinear Vibration of Plates and Shells. Author’s Abstract of Engineering Sciences Doctoral Dissertation, Kiev (1990).Google Scholar
  86. 86.
    E. S. Dekhtyaryuk, T. G. Zakharchenko, and E. D. Lumel’skii, “Evolution of modes of vibration in problems of the nonlinear dynamics of shells,”Sopr. Mater. Teor. Sooruzh.,56, 7–11 (1990).Google Scholar
  87. 87.
    L. G. Donnell,Beams, Plates, and Shells [Russian translation], Nauka, Moscow (1982).Google Scholar
  88. 88.
    David. “Nonlinear vibrations of geometrically imperfect shallow spherical shells with structural damping,”AIAA J.,21, No. 12, 1736–1741 (1983).MATHGoogle Scholar
  89. 89.
    Yu. I. Zharii, “Dynamic loss of stability of a spherical shell,” Tr. of a Seminar on Mathematical Physics and Nonlinear Vibrations, Izd. In-ta Matematiki An Ukr. RSR, Kiev (1968), pp. 108–117.Google Scholar
  90. 90.
    T. G. Zakharenko, Post-Buckling Modes of Deformation of Elements of Thin-Walled Structures Under Periodic Loading. Author’s Abstract of Engineering Sciences Candidate Dissertation, Kiev (1992).Google Scholar
  91. 91.
    M. A. Il’gamov,Vibrations of Elastic Shells Containing a Liquid and a Gas [in Russian], Nauka, Moscow (1969).Google Scholar
  92. 92.
    G. V. Isakhanov, E. S. Dekhtyaryuk, and E. D. Lumel’skii, “Numerical methods of studying nonlinear vibrations of flexible plates and shells,”Probl. Prochn., No. 11, 74–78 (1985).Google Scholar
  93. 93.
    G. V. Isakhanov, E. S. Dekhtyaryuk, V. B. Kovtunov, et al., “Stability and bifurcation of steady-state modes in nonlinear vibrations of plates and shells,”Probl. Prochn., No. 12, 97–102 (1989).Google Scholar
  94. 94.
    V. O. Kononenko, A. A. Bondarenko, P. P. Galaka, et al., in:Study of Vibrations of Glass-Plastic Shells [in Russian], Nauk. Dumka, Kiev (1974).Google Scholar
  95. 95.
    A. V. Karmishin, V. A. Lyaskovets, V. I. Myachenkov, and A. N. Frolov,Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  96. 96.
    E. N. Kvasha, “Vibrations of three-layer plates and shells made of physically nonlinear materials,” Tr. VII All-Union Conf. on the Theory of Plates and Shells (Dnepropetrovssk, 1969). Nauka, Moscow (1970), pp. 281–284.Google Scholar
  97. 97.
    I. G. Kil’dibekov, “Natural nonlinear vibrations of a circular cylindrical shell,” Theory of Plates and Shells: Transactions of the Vm All-Union Conf. on the Theory of Plates and Shells, Rostov-on-the-Don (1971), pp. 488–491.Google Scholar
  98. 98.
    I. G. Kil’debekov, “Study of nonlinear vibrations of cylindrical shells,” DC All-Union Conf. on the Theory of Plates and Shells, Sudostroenie, Leningrad (1973), p. 37.Google Scholar
  99. 99.
    I. G. Kil’debekov, “Study of natural nonlinear vibrations of a cylindrical shell,”Prikl. Mekh.,13, No. 11, 46–52 (1977).Google Scholar
  100. 100.
    I. G. Kil’debekov, “Study of nonlinear vibrations and buckling of a cylindrical shell under intensive acoustic loads,”Prikl. Mekh.,14, No. 7, 43–48 (1978).Google Scholar
  101. 101.
    N. A. Kil’chevskii, G. A. Izdebskaya, and L. M. Kisilevskaya,Lectures in the Analytical Mechanics of Shells [in Russian], Vishcha Shk., Kiev (1974).Google Scholar
  102. 102.
    S. Kislyakov, “Dynamic stability of a cylindrical shell with an initial deflection and without allowance for the deflection,”God. Inzk-Stroit. Inst., No. 1, 32–36 (1964).Google Scholar
  103. 103.
    P. S. Koval’chuk and S. V. Kozlov, “Aspects of the dynamic deformation of thin-walled cylindrical shells,”Probt. Prochn. No. 7, 36–42 (1987).Google Scholar
  104. 104.
    P. S. Koval’chuk and T. S. Krasnoporskaya, “Dynamic instability of imperfect cylindrical shells,” in:Stability of Three-Dimensional Structures [in Russian], Izd. KISI, Kiev (1978).Google Scholar
  105. 105.
    P. S. Koval’chuk and T. S. Krasnoporskaya, “Resonance phenomena in nonlinear vibrations of cylindrical shells with initial imperfections,”Prikl. Mekh.,15, No. 9, 13–20 (1979).Google Scholar
  106. 106.
    P. S. Koval’chuk and T. S. Krasnoporskaya, “Interaction of modes in nonlinear vibrations of cylindrical shells,” in:Dynamics and Vibrations ofMechanical Systems [in Russian], Izd. Ivanov. Un-ta, Ivanovo (1981), pp. 21–26.Google Scholar
  107. 107.
    P. S. Koval’chuk and T. S. Krasnoporskaya, “Wave forms of motion of composite cylindrical shells subjected to periodic loads,”Mekh. Kompozitn. Mater, No. 2, 305–311 (1985).Google Scholar
  108. 108.
    P. S. Koval’chuk and T. S. Krasnoporskaya, “Resonance vibrations of a cylindrical shell subjected to combination periodic loading,”Prikl. Mekh.,23, No. 4, 115–119 (1987).Google Scholar
  109. 109.
    P. S. Koval’chuk, T. S. Krasnoporskaya, and N. P. Podchasov, “Dynamic instability of circular cylindrical shells having an initial deflection,”Prikl. Mekh.,18, No. 3, 28–33 (1982).Google Scholar
  110. 110.
    P. S. Koval’chuk, T. S. Krasnoporskaya, and N. P. Podchasov, “Determination of the vibration damping characteristics of cylindrical shells with initial shape imperfections,” XIII Conference on Energy Dissipation in the Vibration ofMechanical Systems, Nauk. Dumka, Kiev (1983).Google Scholar
  111. 111.
    P. S. Koval’chuk, T. S. Krasnoporskaya, and A. I. Telalov, “Effect of deformation on the dynamic instability of a cylindrical shell with initial imperfections,” in:Energy Dissipation in Vibrations ofMechanical Systems [in Russian], Nauk. Dumka, Kiev (1982), pp. 25–30.Google Scholar
  112. 112.
    P. S. Koval’chuk and V. D. Kubenko, “Interaction of vibrating cylindrical shells with a liquid inside them,” in:Dynamics of Bodies Interacting with a Medium [in Russian], Nauk. Dumka, Kiev (1991), pp. 168–214.Google Scholar
  113. 113.
    P. S. Koval’chuk and V. D. Lakiza, “Experimental analysis of nonlinear vibrations of glass-plastic shells of revolution,”Prikl. Mekh.,31, No. 11, 63–69 (1995).Google Scholar
  114. 114.
    P. S. Koval’chuk, V. S. Pavlovskii, and V. G. Filin, “Analysis of resonance modes of wave deformation of cylindrical shells carrying a liquid,”Prikl. Mekh.,30, No. 2, 49–54 (1994).Google Scholar
  115. 115.
    P. S. Koval’chuk and N. P. Podchasov, “Nonlinear bending waves in cylindrical shells subjected to periodic excitation,”Prikl. Mekh.,24, No. 11, 58–62 (1988).Google Scholar
  116. 116.
    P. S. Koval’chuk and N. P. Podchasov, “Study of the load-carrying capacity of closed cylindrical segments weakened by holes and subjected to axial pulsating loading,” Science and Defense: Symposium (1994), Vol. 2, pp. 111–126.Google Scholar
  117. 117.
    P. S. Koval’chuk and A. I. Telalov, “Nonlinear interaction of modes of flexural vibrations of cylindrical shells subjected to periodic excitation,” in:Calculation of the Stress-Strain State of Plates and Shells [in Russian], Izd. Saratov. Un-ta, Saratov (1981), pp. 30–35.Google Scholar
  118. 118.
    P. S. Koval’chuk, A. I. Telalov, and M. M. Askarov, “Study of the dynamic properties of deformable systems with the use of amplitude-phase frequency characteristics,”Dinamicheskoe Uravnoveshivanie Kolebaniya i Ustoichivost’ Dvizhenii,98, 42–65 (1975).Google Scholar
  119. 119.
    D. A. Kovrigin, Nonlinear Dynamics of Thin-Walled Cylindrical Shells. Free Vibrations. Preprint, GF IMASh AN SSSR, Gorky (1990).Google Scholar
  120. 120.
    D. A. Kovrigin, Nonlinear Resonance Interactions of Waves in Elastic Structural Elements. Author’s Abstract of Physical-Mathematical Sciences Candidate Dissertation, Gorky (1992).Google Scholar
  121. 121.
    D. A. Kovrigin and A. I. Potapov, “Nonlinear vibrations of a thin ring,”Prikl. Mekh.,25, No. 3, 76–81 (1989).Google Scholar
  122. 122.
    D. A. Kovrigin and A. I. Potapov, “Nonlinear resonance interactions of longitudinal and bending waves in a ring,”Dokl. Akad. Nauk SSSR,305, No. 4, 803-S07 (1989).MathSciNetGoogle Scholar
  123. 123.
    S. V. Kozlov, “Regions of parametric instability of an orthotropic cylindrical shell with apparent additional masses,”Dopov. Akad. Nauk Ukr RSR Ser. A, No. 2, 47–51 (1981).Google Scholar
  124. 124.
    V. O. Kononenko and N. P. Plakhtienko,Methods of Identifying Vibrating Nonlinear Mechanical Systems [in Russian], Nauk. Dumka, Kiev (1976).Google Scholar
  125. 125.
    V. A. Krys’ko,Nonlinear Statics and Dynamics of Nonuniform Shells [in Russian], Izd. Saratov. Un-ta, Saratov (1976).Google Scholar
  126. 126.
    V. D. Kubenko, P. S. Koval’chuk, L. G. Boyarshina, et al.,Nonlinear Dynamics ofAxisymmetric Bodies Carrying a Liquid [in Russian], Nauk. Dumka, Kiev (1992).Google Scholar
  127. 127.
    V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya, “Effect of initial deflection on nonlinear natural vibrations of cylindrical shells,”Prikl. Mekh.,18, No. 1, 43–49 (1982).Google Scholar
  128. 128.
    V. D. Kubenko, P. S. Koval’chuk, and T. S. Krasnopol’skaya,Nonlinear Interaction of Modes of Flexural Vibration of Cylindrical Shells [in Russian], Nauk. Dumka, Kiev (1984).Google Scholar
  129. 129.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov, “Wave forms of motion of circular cylindrical shells,”Prikl. Mekh.,18, No. 2, 16–22 (1982).Google Scholar
  130. 130.
    V. D. Kubenko, P. S. Koval’chuk, and N. P. Podchasov,Nonlinear Vibrations of Cylindrical Shells [in Russian], Vishcha Shk., Kiev (1989).MATHGoogle Scholar
  131. 131.
    V. D. Kubenko, P. S. Koval’chuk, and A. D. Reshetar’, “Modes of flexural vibration of spherical shells with initial imperfections,”Prikl. Mekh., No. 12, 30–39 (1988).Google Scholar
  132. 132.
    A. D. Lizarev and N. B. Rostanina,Vibrations of Metal-Polymer and Uniform Spherical Shells [in Russian], Nauka i Tekhnika, Minsk (1984).Google Scholar
  133. 133.
    E. D. Lumel’skii, Interaction of Bending Modes in Forced Nonlinear Vibrations of Plates and Shells. Author’s Abstract of Engineering Sciences Candidate Dissertation, Kiev (1986).Google Scholar
  134. 134.
    A. I. Lur’e,Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).MATHGoogle Scholar
  135. 135.
    A. I. Lyapunov,General Problem of the Stability of Motion [in Russian], Gostekhizdat, Moscow (1950).Google Scholar
  136. 136.
    McLaughlin,Theory and Applications of Mathieu Functions [Russian translation], EL, Moscow (1953).Google Scholar
  137. 137.
    I. G. Malkin,Certain Problmes of the Theory of Nonlinear Vibrations [in Russian], Fizmatgiz, Moscow (1956).Google Scholar
  138. 138.
    I. G. Malkin,Theory of the Stability of Motion [in Russian], Nauka, Moscow (1966).Google Scholar
  139. 139.
    A. I. Manevich, “Interaction of conjugate modes in nonlinear free flexural vibrations of a circular ring,”Prikl. Mat. Mekh.,58, No. 6, 119–125(1994).MathSciNetGoogle Scholar
  140. 140.
    V. I. Matsner, “Study of the effect of initial deflections on the natural frequencies of vibration of shells loaded by axial compressive forces,”Prikl. Mekh.,14, No. 5, 112–116 (1978).Google Scholar
  141. 141.
    A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, et al., in:Methods of Peforming Dynamic Calculations and Tests of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  142. 142.
    G. N. Mikishev,Experimental Methods in the Dynamics of Spacecraft [in Russian], Mashinostroenie, Moscow (1971).Google Scholar
  143. 143.
    G. N. Mikishev and B. I. Rabinovich,Dynamics of Thin-Walled Structures with Compartments Containing a Liquid [in Russian], Mashinostroenie, Moscow (1971).Google Scholar
  144. 144.
    G. V. Mishenkov, “Dynamic stability of shallow elastic shells,”Inzh. Zh.,1, No. 2, 112–118 (1961).Google Scholar
  145. 145.
    G. V. Mishenkov, “Dynamic stability of a shallow spherical shell,” Tr. All-Union Conf. on the Theory of Plates and Shells, Izd. Kazan. Un-ta, Kazan (1961), pp. 139–145.Google Scholar
  146. 146.
    Kh. M. Mushtari and K. Z. Galimov,Nonlinear Theory of Elastic Shells [in Russian], Tatknigoizdat, Kazan (1957).Google Scholar
  147. 147.
    A. V. Karmishin, E. D. Skurlatov, V. G. Startsev, et al., in:Transient Aerohydroelasticity of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1982).Google Scholar
  148. 148.
    V. V. Novozhilov,Theory of Thin Shells [in Russian], Sudpromizdat, Leningrad (1962).Google Scholar
  149. 149.
    G. V. Nozhak, “Parametric vibrations of a cylindrical shell compressed by a pulsating load,”Prikl. Mekh.,1, No. 7, 135–138 (1965).Google Scholar
  150. 150.
    I. F. Obraztsov, L. M Savel’ev, and Kh. S. Khazanov,Finite Element Method in Problems of the Structural Mechanics of Aircraft [in Russian], Vyssh. Shk., Moscow (1985).Google Scholar
  151. 151.
    P. M. Ogibalov,Problems of the Dynamics and Stability of Shells [in Russian], Izd-vo Most Un-ta, Moscow (1963).Google Scholar
  152. 152.
    P. M. Ogibalov and M. A. Koltunov,Shells and Plates [in Russian], Izd-vo Most. Un-ta, Moscow (1969).Google Scholar
  153. 153.
    O. D. Oniashvili,Certain Dynamic Problems of the Theory of Shells [in Russian], Izd. An SSSR, Moscow (1957).Google Scholar
  154. 154.
    Ya. G. Panovko,Internal Friction in Vibrations of Elastic Systems [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  155. 155.
    V. N. Pastushikhin, “Vibrations of shallow shells of nonlinearry elastic materials with allowance for internal inelastic resistance,”Raschet Prostranstvennykh Konstruktsii,10, 32–38 (1967).Google Scholar
  156. 156.
    V. N. Pastushikhin, “Free vibrations of nonlinearly elastic shells,”Prikl. Mekh.,7, No. 3, 16–20 (1971).Google Scholar
  157. 157.
    Yu. S. Petrina and K. O. Eneremadu, “Study of two-frequency modes of vibration of plates and shells,”Sopr. Mater. Teor. Sooruzh.,59, 76–79 (1991).Google Scholar
  158. 158.
    A. K. Pertsev and E. G. Platonov,Dynamics of Plates and Shells [in Russian], Sudostroenie, Leningrad (1987).Google Scholar
  159. 159.
    G. S. Pisarenko,Vibrations of Mechanical Systems with Allowance for the Imperfect Elasticity of the Material [in Russian], Nauk. Dumka, Kiev (1970).Google Scholar
  160. 160.
    G. S. Pisarenko and A. N. Chemeris, “Dynamic instability of a cylindrical shell,” in:Energy Dissipation in Vibrations of Mechanical Systems [in Russian], Nauk. Dumka, Kiev (1968).Google Scholar
  161. 161.
    N. P. Plakhtienko, Analytical Methods of Identifying Vibrating Nonlinear Mechanical Systems. Author’s Abstract of Physical-Mathematical Sciences Doctoral Dissertation. Moscow (1985).Google Scholar
  162. 162.
    N. P. Podchasov, “Parametrically excited wave forms of motion of circular cylindrical shells,”Prikl. Mekh.,25, No. 5, 45–50 (1989).MathSciNetGoogle Scholar
  163. 163.
    A. I. Potapov,Nonlinear Strain Waves in Rods and Plates [in Russian], Izd. Gor’kov. Un-ta, Gorky (1985).Google Scholar
  164. 164.
    I. N. Preobrazhenskii,Stability and Vibrations of Plates and Shells with Holes [in Russian], Mashinostroenie, Moscow (1986).Google Scholar
  165. 165.
    I. N. Preobrazhenskii and V. Z. Grishak,Stability and Vibrations of Conical Shells [in Russian], Mashinostroenie, Moscow (1986).Google Scholar
  166. 166.
    I. A. Birgerand Ya. G. Panovko (editors),Strength, Stability, Vibrations: Handbook [in Russian], Vol. 3, Mashinostroenie, Moscow (1968).Google Scholar
  167. 167.
    M. I. Rabinovich and D. I. Trubetskov,Introduction to the Theory of Vibrations and Waves [in Russian], Nauka, Moscow (1984).Google Scholar
  168. 168.
    A. D. Reshetar’, Vibrations of Shallow Spherical Shells with Allowance for Initial Imperfections and Geometric Nonlinearity. Author’s Abstract of Physical-Mathematical Sciences Candidate Dissertation, Kiev (1988).Google Scholar
  169. 169.
    G. M. Sal’nikov, “Dynamic instability of cylindrical and conical shells of circular and noncircular cross section with different boundary conditions,”Issled. Teor. Plastin Obolochek, No. 5, 469–479 (1967).Google Scholar
  170. 170.
    Yu. V. Samoilov, “Evaluating the accuracy of approximate solutions in problems of the nonlinear vibration of shells,”Stroit. Mekh. Raschet Sooruzh., No. 6, 37–41 (1971).Google Scholar
  171. 171.
    I. A. Sakharov, “Nonlinear and nonaxisymmetric transverse vibrations of a shallow spherical shell,”Uprugost Neuprugost,2, 58–63 (1971).Google Scholar
  172. 172.
    V. I. Sedenko, “Classical solvability of initial-boundary-value problems for the Marguerre—Vlasov equations in the nonlinear theory of vibration of shallow shells,”Dokl. Rossiisk. Akad. Nauk,340, No. 3, 31–35 (1994).Google Scholar
  173. 173.
    V. I. Sedenko, Classical Solvability of Initial-Boundary-Value Problems for the Marguerre-Vlasov Equations in the Nonlinear Theory of Vibration of Shallow Shells. Author’s Abstract of Physical-Mathematical Sciences Doctoral Dissertation, Rostov-on-the-Don (1995).Google Scholar
  174. 174.
    Sh. M. Sibukaev, “Parametric vibrations of a shallow cylindrical shell,”Dokl. Akad. Nauk Uzb. SSR, No. 10, 6–8 (1969).Google Scholar
  175. 175.
    E. F. Sivak, “Study of the effect of atmospheric pressure on natural and parametric vibrations of cylindrical shells,”Prikl. Mekh.,14, No. 2, 132–135.Google Scholar
  176. 176.
    V. B. Silkin, “Effect of the boundary conditions on the character of motion of a shallow spherical shell in certain nonlinear problems,”Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 3, 25–29 (1971).Google Scholar
  177. 177.
    S. B. Sinitsin, “Vibrations of a cylindrical shell of nonlinearly elastic materials during passage through parametric resonance,”Prikl. Mekh.,10, No. 9, 113–118 (1974).Google Scholar
  178. 178.
    S. B. Sinitsin, “Parametric vibrations of cylindrical shells of nonlinearly elastic materials with allowance for amplitude-dependent internal friction,”Prikl. Mekh.,12, No. 5, 56–63 (1976).Google Scholar
  179. 179.
    B. G. Korenev and I. M. Rabinovich,Handbook of Structural Dynamics [in Russian], Stroizdat, Moscow (1972).Google Scholar
  180. 180.
    Yu. N. Tamurov, Dynamics of Physically Nonlinear Three-Layer Shells and Plates. Author’s Abstract of Physical-Mathematical Sciences Candidate Dissertation. Zaporozhe (1988).Google Scholar
  181. 181.
    Yu. N. Tamurov, “Parametric vibrations of three-layer shells with allowance for compression of the nonlinearly elastic filler,” Proc. XV All-Union Conf. on the Theory of Plates and Shells, Izd. Kazan. Un-ta, Kazan (1990), pp. 673–678.Google Scholar
  182. 182.
    A. I. Telalov, Investigation of Vibrations of Glass-Plastic Shells. Author’s Abstract of Engineering Sciences Candidate Dissertation. Kiev (1975).Google Scholar
  183. 183.
    I. G. Teregulov, “Development of the nonlinear mechanics of shells in the works of the Kazan school,”Mech. Teor. i Stos.,25, No. 4, 541–555 (1987).MATHGoogle Scholar
  184. 184.
    A. P. Filippov, Vibrations of Deformable Systems [in Russian], Mashinostroenie, Moscow (1970).Google Scholar
  185. 185.
    R. M. Finkel’shtein, “Stability of a thin spherical shell,”Issled. Uprugosti Plast., No.1, 36–45 (1961).Google Scholar
  186. 186.
    S. S. Khalyuk, Nonlinear Vibrations of Multilayer Cylindrical Shells of Regular Structure. Author’s Abstract of Engineering Sciences Candidate Dissertation, Kiev (1981).Google Scholar
  187. 187.
    T. Hayashi,Nonlinear Vibrations in Physical Systems [Russian translation], Mir, Moscow (1968).Google Scholar
  188. 188.
    Yu. S. Shkener, “Nonlinear vibrations of circular rings,”Inzh. Sb. Izd. Akad. Nauk SSSR,28, 72–78 (1960).Google Scholar
  189. 189.
    G. Schmidt,Parametric Vibrations [Russian translation], Mir, Moscow (1978).Google Scholar
  190. 190.
    V. A. Yakubovich and V. M. Starzhinskii,Linear Differential Equations with Periodic Coefficients and Their Applications [in Russian], Nauka, Moscow (1972).Google Scholar
  191. 191.
    N. Z. Yakushev, “Nonlinear vibrations of plates and shells,”Issed. Teor. Plastin Obolochek, No.13, 203–216 (1978).Google Scholar
  192. 192.
    O. E. Adams and R. M. Evan-Ivanovski, “Passage through parametric resonance of a reinforced cylindrical shell,” Proc. 3rd Can. Congr. Appl. Meek, Calgary (1971), pp. 433–434.Google Scholar
  193. 193.
    O. E. Adams and R. M. Evan-Iwanovski, “Stationary and non-stationary resonances of a reinforced cylindrical shell near parametric resonance,”Int. J. Non-Linear Mech.,8, 565–573 (1973).CrossRefGoogle Scholar
  194. 194.
    S. Atluri, “A perturbation analysis of nonlinear free flexural vibrations of circular cylindrical shell,”Int. J. Solids Struct.,8, No. 4, 549–569 (1972).CrossRefMATHGoogle Scholar
  195. 195.
    J. C. Chen and C. D. Babcock, “Nonlinear vibration of cylindrical shells,”AIAA J.,13, No. 7, 868–876 (1975).MATHGoogle Scholar
  196. 196.
    H. N. Chu, “Influence of large amplitudes on flexural vibrations of a thin cylindrical shell,”J. Aerospace Sci.,28, No. 8, 602–609 (1961).MATHMathSciNetGoogle Scholar
  197. 197.
    E. H. Dowell and C. S. Ventres, “Model equations for the nonlinear flexural vibrations of a cylindrical shell,”Int. J. Solids Struct.,4, No. 10, 975–991 (1968).MATHCrossRefGoogle Scholar
  198. 198.
    D. A. Evensen, “Some observations on the nonlinear vibration of thin cylindrical shells,”AIAA J., No.1, 2857–2858 (1963).Google Scholar
  199. 199.
    D. A. Evensen, “A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings,”J. Appl. Mech., No. 33, 553–560 (1966).Google Scholar
  200. 200.
    D. A. Evensen, “Nonlinear vibrations of an infinitely long cylindrical shell,”AIAA J.,6, No. 7, 1401–1403 (1968).MATHGoogle Scholar
  201. 201.
    D. A. Evensen and R. E. Fulton, “Some studies on the nonlinear dynamic response of shell type structures,” in:Dynamic Stability of Structures, Pergamon, New York (1966), pp. 237–254.Google Scholar
  202. 202.
    W. Flugge,Stresses in Shells, Springer Verlag, Berlin (1973).Google Scholar
  203. 203.
    J. H. Ginsberg, “Nonlinear resonant vibrations of infintely long cylindrical shells,”AIAA J.,10, 979–980 (1972).Google Scholar
  204. 204.
    J. H. Ginsberg, “Large amplitude forced vibrations of simply supported thin cylindrical shells,”Trans. ASME Ser. E,40, No. 2, 57–60 (1963).Google Scholar
  205. 205.
    L. Koval, “Note on the effect of dynamic asymmetry on the vibrations of cylindrical shells,”J. Acoust. Soc. Am.,35, No. 2, 57–60 (1963).CrossRefGoogle Scholar
  206. 206.
    A. E. Love, ATreatise on the Mathematical Theory of Elasticity, Cambridge (1927).Google Scholar
  207. 207.
    K. Marguerre, “Zur Theorie der gekrummten Platte grosser Formaenderung,” Proc. 5th Int Congr. Appl. Mech., Cambridge, Mass., 1938; J. Wiley and Sons, New York (1939), pp. 93–101.Google Scholar
  208. 208.
    T. Matsuzaki and S. Kobayashi, “A theoretical and experimental study of the nonlinear flexural vibration of thin circular shells with clamped ends,”J. Jap. Soc. Aeronaut. Space Sci.,12, No. 21, 55–62 (1970).Google Scholar
  209. 209.
    A. H. Nayfeh and D. T. Mook,Nonlinear Oscillations, Wiley, New York (1979).MATHGoogle Scholar
  210. 210.
    J. I. Nowinski, “Nonlinear transverse vibrations of orthotropic cylindrical shells,”AIAA J.,1, No. 3, 617–620 (1963).Google Scholar
  211. 211.
    M. D. Olson, “Some experimental observations on the nonlinear vibration of cylindrical shells,”AIAA J.,3, No. 9, 1175–1177 (1965).Google Scholar
  212. 212.
    W. Pietraszkiewich, “Non-linear theories of thin elastic shells (in Polish),” Proc. Polish Symp. Shell Structures. Theory and Applications (Krakow, May 25–26, 1974). Polish Sci. Publ., Warsaw (1978), pp. 27–50.Google Scholar
  213. 213.
    H. R. Radwan and J Genin, “Nonlinear vibrations of thin cylinders,”Trans. ASM Ser. E, No. 2, 370–372 (1976).Google Scholar
  214. 214.
    H. R. Radwan and J. Genin, “Dynamic instability in cylindrical shells,”J. Sound Vib.,56, No. 3, 373–382 (1978).MATHGoogle Scholar
  215. 215.
    J. Ramachadran, “Vibration of shallow spherical shells at large amplitudes,”Trans. ASME J. Appl. Mech.,E 41, No. 3, 811–812 (1974).Google Scholar
  216. 216.
    E. Reissner, “Nonlinear effects in vibrations of cylindrical shells,” Aeromechanics Report No. AM 5–6, Guided Missle Research Div., The Ramo-Wooldridge Corp (Sept. 1955).Google Scholar
  217. 217.
    E. Reissner, “On transverse vibration of thin shallow shells,”J. Q. Appl. Math.,13, No. 2, 169–180 (1955).MathSciNetMATHGoogle Scholar
  218. 218.
    J. Singer, J. Arboc, and C. D. Babcock, “Buckling of imperfect stiffened cylindrical shells under axial compression,”AIAA J.,9, 68–75 (1971).CrossRefGoogle Scholar
  219. 219.
    Y. C. Fung and E. E. Sechler (editors),Thin-Shell Structures. Theory, Experiment, and Design, Prentice Hall, Englewood Cliffs, New Jersey (1974).Google Scholar
  220. 220.
    S. P. Timoshenko,Theory of Plates and Shells, McGraw-Hill, New York (1940).MATHGoogle Scholar
  221. 221.
    S. A. Tobias, “A theory of imperfection for the vibration of elastic bodies of revolution,”Engineering, No.172, 409–420 (1951).Google Scholar
  222. 222.
    I. C. Yao, “Dynamic stability of cylindrical shells under static and periodic axial radial loads,”AIAA J.,1, No. 6, 1391–1396 (1963).Google Scholar
  223. 223.
    I. C. Yao, “Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads,”Trans. ASME Ser. E, J. Appl. Mech.,32, No. 1, 109–115 (1965).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. D. Kubenko
    • 1
  • P. S. Koval’chuk
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations