Advertisement

JOM

, Volume 54, Issue 4, pp 28–31 | Cite as

Current density limitation and diffusion boundary layer calculation using CFD method

  • A. Filzwieser
  • K. Hein
  • G. Mori
Research Summary Copper Electrodeposition

Abstract

The knowledge of limiting current density and thickness of diffusion boundary layer is particularly important in improving space-time-yield of electrolysis and especially of high current-density electrolysis. Both natural and forced convection of electrolyte flow are considered in the presented computational fluid dynamics model for calculation of these values. Natural convection is modeled by implementation of a source term at the cathode surface for copper concentration according to Faraday’s law, which allows calculation of electrolyte density for each volume cell of the grid. Forced convection is considered as flow of electrolyte through the cell generated by electrolyte inlet and outlet. By variation of current density, the limiting current density can be calculated with a copperion concentration of zero at the cathode surface after reaching the steady-state conditions in electrolyte. Time dependency of diffusion boundary layer thickness is shown for a chosen cell geometry. Literature data and measured and calculated values of both quantities are in good agreement.

Keywords

Natural Convection Copper Concentration Force Convection Cathode Surface Diffusion Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Lbl, ⪙Die Rolle des elektrolytischen Stoff- und Ladungstransportes in der Elektrometallurgie,”Erzmetall, 22 (1969), pp. 87–98.Google Scholar
  2. 2.
    C.H. Hamann, and W. Vielstich, eds.,Elektrochemie (Weinheim, Germany: Wiley-VCH, 1998), pp. 177–182.Google Scholar
  3. 3.
    S. Patankar, ed.,Numerical Heat Transfer and Fluid Flow (New York: McGraw-Hill, 1980).Google Scholar
  4. 4.
    Fire® Manual, Version 6 (Graz, Austria: AVL, 1995).Google Scholar
  5. 5.
    A. Lackner, “Strömungssimulation in verschiedenen Reaktoren der NE-Metallurgie” (Ph.D. thesis, University of Leoben, 1996).Google Scholar
  6. 6.
    A. Filzwieser, “Modellierung der kathodennahen VorgÄnge in der Kupferelektroyse” (Ph.D. thesis, University of Leoben, 2000).Google Scholar
  7. 7.
    D.C. Price and W.G. Davenport, “Densities, Electrical Conductivities and Viscosities of CuSO4/H2SO4 Solutions in the Range of Modern Electrorefining and Electrowinning Electrolytes,”Metall, Trans., 11B (1980), pp. 159–163.Google Scholar
  8. 8.
    A. Filzwieser et al., “dEinsatz bipolarer Elektroden für die Hochstromelektrolyse bei der Kupfergewinnung,” BHM, 144 (1999), pp. 13–18.Google Scholar
  9. 9.
    R. Meyer, “Kupferfolienherstellung bei Stromdichten >1000 A/m2” (Master thesis, University of Leoben, 2000).Google Scholar
  10. 10.
    G. Hanko, K. Hein, and A. Filzwieser, “Visualisierung und Quantifizierung der StrömungsverhÄltnisse in einer Kupfergewinnungselektrolyse,”Erzmetall, 52 (1999), pp. 226–235.Google Scholar
  11. 11.
    D. Schab and K. Hein, “Problems of Anodic and CathodicMassTransfer in Copper Refining Electroylsis with Increasing Current Density,”Canad. Metall. Quart, 31 (1992), pp. 173–179.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2002

Authors and Affiliations

  • A. Filzwieser
    • 1
  • K. Hein
    • 2
  • G. Mori
    • 3
  1. 1.RHI AGViennaAustria
  2. 2.Technical University FreibergUniversity of LeobenFreibergGermany
  3. 3.University of LeobenFreibergGermany

Personalised recommendations