Combustion, Explosion and Shock Waves

, Volume 36, Issue 1, pp 62–71 | Cite as

Methodical problems of solid-propellant burning-rate measurements using microwaves

  • V. E. Zarko
  • D. V. Vdovin
  • V. V. Perov


A brief review of microwave techniques for measuring solid-propellant burning rate is given, and the principles of the techniques are described. A burning-rate meter operating in the 2-mm microwave band, which was designed by the authors, is described, and tentative results obtained using this device are reported. Limitations of the method, sources of errors, and problems related to the choice of the microwave band and measurement systems are discussed. Problems that should be solved to increase the accuracy and reliability of burning-rate measurements using microwave techniques are considered.


Microwave Burning Rate Burning Surface Solid Propellant Microwave Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Zarko and K. K. Kuo, “Critical review of methods for regression rate measurements of condensed phase systems,” in: K. K. Kuo and T. Parr (eds.)Nonintrusive Combustion Diagnostics, Begel House, New York (1994), pp. 600–623.Google Scholar
  2. 2.
    L. D. Strand, K. R. Magiawala, and R. P. McNamara, “Microwave measurement of solid-propeliant pressure-coupled response function,”J. Spacecraft,17, No. 6 (1980).Google Scholar
  3. 3.
    D. T. Foss, R. J. Roby, and W. F. O’Brien, “Development of dual-frequency microwave burn-rate measurement system for solid rocket propellant,”J. Propuls. Power,9, No. 4 (1993).Google Scholar
  4. 4.
    P. Venugopalan, K. A. Jose, K. G. Nair, et al. “Microwave method for locating inhomogeneities in cured rocket propellant samples,”NDT Int.,19, No. 6 (1986).Google Scholar
  5. 5.
    B. Koch, “Reflexion de micro-ondes par des phenomenes de detonation,”C. R. Acad. Sci. Paris.,236, 661–663 (1953).Google Scholar
  6. 6.
    M. A. Cook, R. L. Doran, and G. J. Moris, “Measurement of detonation velocity by the Doppler effect at the three-centimeter wavelength,”J. Appl. Phys.,26, No. 3 (1955).Google Scholar
  7. 7.
    G. F. Cawsey, J. L. Farrands, and S. Thomas, “Observations of detonation in solid explosives by microwave interferometry,”Proc. Roy. Soc. London. Ser. A,248, (1958), pp. 199–521.CrossRefGoogle Scholar
  8. 8.
    D. L. Johnson,Microwave Measurement of the Solid Propellant Burning Rates, Giannini Controls Corp., Duarte (1962).Google Scholar
  9. 9.
    R. B. Cole, “High pressure solid propellant combustion studies using a closed bomb,” Rohm and Haas Co., Rept. S-68, Contract DA-01-021 ord-11, 909(Z), October, Huntsville, AL (1965).Google Scholar
  10. 10.
    D. S. Dean and D. T. Green, “The use of microwaves for the detection of flaws and measurement of erosion rates in materials,”J. Sci. Instrum.,44, No. 9 (1967).Google Scholar
  11. 11.
    H. L. Wood, W. F. O’Brien, and C. B. Dale, “Measurement of solid propellant burning rates employing microwave techniques,” in:Proc. of the 6th Int. Symp. on Air Breathing Engines, Paris, France (1983).Google Scholar
  12. 12.
    J. Gittins, R. D. Gould, P. D. Penny, and P. C. Wellings, “Solid propellant combustion instability,”J. British Interplanet. Soc.,25, No. 6 (1972).Google Scholar
  13. 13.
    H. L. Wood and W. F. O’Brien, Progress Report, NASA Research Grant NGR 47-004-024, Virginia Polytech. Inst. Blacksburg (1968).Google Scholar
  14. 14.
    H. L. Wood, Final Report, NASA Grant NGR 47-004-024, Virginia Polytech. Inst., Blacksburg (1970).Google Scholar
  15. 15.
    B. A. Anicin, B. Jojic, D. Blagojevic, et al., “Flame plasma and the microwave determination of solid propellant regression rates,”Combust. Flame,64 (1986).Google Scholar
  16. 16.
    V. S. Bozic, D. D. Blagojevic, and B. A. Anicin, “Measurement system for determining solid rocket propellant burning rate using reflection microwave interferometry,”J. Propuls. Power,13, No. 4 (1997).Google Scholar
  17. 17.
    V. S. Bozic, D. D. Blagojevic, and B. A. Anicin, “Measurement system for determining solid propellant burning rate using transmission microwave interferometry,”J. Propuls. Power,14, No. 4 (1998).Google Scholar
  18. 18.
    S. V. Shelton, “A technique for measurement of solid propellant burning rates during rapid pressure transients,” in: Bulletin of the 4th ICRPG Combustion Conference, CPIA Publication No. 162, Vol. I, Silver Spring (1967), pp. 361–372.Google Scholar
  19. 19.
    A. Alkidas, A. Clary, G. Giles, and S. Shelton, “Measurement of steady state and transient solid propellant burning rates with microwaves,” Final Report, Georgia Inst. of Technology, U. S. Air Force Office of Scientific Research 70-1934, Atlanta (1973).Google Scholar
  20. 20.
    L. D. Strand, A. L. Schultz, and G. K. Reedy, “Microwave doppler shift technique for determining solid propellant transient regression rates,”J. Spacecraft Rockets,11, No. 2 (1974).Google Scholar
  21. 21.
    L. D. Strand and R. P. McNamara, “A variable-frequency driver-microwave transient regression rate measurement system,” in: T. L. Boggs and B. T. Zinn (eds.),Progress in Astronautics and Aeronautics, Vol. 63:Experimental Diagnostics in Combustion of Solids (1978), pp. 155–172.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. E. Zarko
    • 1
  • D. V. Vdovin
    • 1
  • V. V. Perov
    • 1
  1. 1.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations