Skip to main content
Log in

Selenium status indices, laboratory data, and selected biochemical parameters in end-stage renal disease patients

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We investigated the relations between selenium status (SeS) parameters, indexes of nutrition, erythropoiesis, and uremic toxemia, serum electrolytes, and other biochemical markers in end-stage renal disease (ESRD) patients, as no multivariate statistical analysis concerning all of these parameters was performed so far. SeS was evaluated by plasma Se concentration (plSe) and glutathione peroxidase (plGSHPx) activity in 69 uremic patients treated with hemodialysis (HD) and 40 healthy controls. The hierarchical multivariate partial least squares model (PLS2) was employed to establish data structure and correlations between parameters investigated. plSe and plGSHPx activity were significantly lower in patients when compared with controls (p=0.000). plSe was positively associated with indexes of erythropoiesis and nutritional status, as well as serum electrolytes and parameters of uremic toxemia. plGSHPx was inversely dependent on the pair of parameters: intact parathyroid hormone (iPTH) and aluminum plasma concentration (Al). We conclude that (1) ESRD strongly decreases selenium status and (2) the PLS2 approach revealed the existence of significant interactions among plSe, plGSHPx, and selected biochemical parameters or groups of such parameters; some of these associations need further studies to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Durak, O. Akyol, E. Basesme, et al., Reduced erythrocyte defense mechanisms against free radical toxicity in patients with chronic renal failure, Nephron 66, 76–80 (1994).

    PubMed  CAS  Google Scholar 

  2. D. Girelli, O. Olivieri, A. M. Stanzial, et al., Low platelet glutathione peroxidase activity and serum Se concentration in patients with chronic renal failure: relations to dialysis treatments, diet and cardiovascular complications, Clin. Sci. 84, 611–617 (1993).

    PubMed  CAS  Google Scholar 

  3. B. Jeren-Strujic, M. Antos, R. Klepac, et al., Relation between Se level and free radicals in patients on dialysis. Trace. Elements Electrolytes 12, 203–205 (1995).

    Google Scholar 

  4. K. Köse, P. Doĝan, Z. Gündüz, et al., Oxidative stress in hemodialyzed patients and the long-term effects of dialyzer reuse practice, Clin. Biochem. 30, 601–606 (1997).

    Article  PubMed  Google Scholar 

  5. R. Vanholder, R. Cornelis, A. Dhondt, et al., The role of trace elements in uraemic toxicity, Nephrol. Dial. Transplant. 17(Suppl. 2), 2–8 (2002).

    PubMed  CAS  Google Scholar 

  6. S. Rački, L. Zaputović, B. Vujičić et al., Cardiovascular risk factors and diseases strongly predict hemodialysis treatment outcome in maintenance hemodialysis patients, Croat. Med. J. 46, 936–941 (2005).

    PubMed  Google Scholar 

  7. G. N. Schrauzer, Selenium, immune response, and nutritional requirements, Nutrition 7, 221 (1991).

    Google Scholar 

  8. G. N. Schrauzer, The nutritional significance, metabolism and toxicology of selenomethionine, Adv. Food Nutr. Res. 47, 73–112 (2003).

    PubMed  CAS  Google Scholar 

  9. I. Harrison, D. Littlejohn, and G. S. Fell, Distribution of selenium in human blood plasma and serum, Analyst 121, 189–194 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. T. Plecko, M. Rükgauer, and J. D. Kruse-Jarres, Distribution of human plasma a selenium and its role in the antioxidant system, Metal Ions Biol. Med. 5, 385–389 (1998).

    Google Scholar 

  11. C. Nichol, J. Herdman, N. Sattar, et al., Changes in the concentrations of plasma selenium and selenoproteins after minor elective surgery: further evidence for a negative acute phase response? Clin. Chem. 44, 1764–1766 (1998).

    PubMed  CAS  Google Scholar 

  12. N. Sataar, G. S. Fell, I. Harrison, et al., Are the low concentrations of plasma Se observed in some severly ill patients due to the acute phase response to inflammation, injury and sepsis? in Program and Abstract Book of the 6th International Symposium in Selenium in Biology and Medicine, Beijing, p. 80 (1996).

  13. H. Nasri, Serum C-reactive protein (CRP) in association with various nutritional parameters in maintenance hemodialysis patients, Bratisl. Lek. Listy 106, 390–395 (2005).

    PubMed  CAS  Google Scholar 

  14. M. J. Esteve, R. Farre, A. Frigola, et al., Determination of ascorbic and dehydroascorbic acids in blood plasma and serum by liquid chromatography, J. Chromatogr. B. Biomed. Sci. Appl. 688, 345–349 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. E. Bobrowicz, J. Naskalski, and A. Siedlecki, Preanalytical factors in human plasma ascorbate assay, Clin. Chim. Acta 314, 237–239 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. P. Zagrodzki, F. Nicol, M. A. McCoy, et al, Iodine deficiency in cattle: compensatory changes in thyroidal selenoenzymes, Res. Vet. Sci. 64, 209–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. J. Neve, S. Chammart, and L. Molle, Optimization of a direct procedure for the determination of selenium in plasma and erythrocytes using Zeeman effect atomic absorption spectroscopy, Trace Elements Anal. Chem. Med. Biol. 4, 349–358 (1987).

    Google Scholar 

  18. H. J. Bartoń, Z. Zachwieja, M. Folta, et al., A pilot study of aluminum level in plasma in healthy subjects in Poland. Przegl. Lek. 60(Suppl. 6), 111–114 (2003) (in Polish).

    PubMed  Google Scholar 

  19. S. Clementi, G. Cruciani, and G. Curti, Some applications of the partial least-squares method, Anal. Chim. Acta 191, 149–160 (1986).

    Article  CAS  Google Scholar 

  20. I. E. Frank, J. Feikema, N. Constantine, et al., Prediction of product quality from spectral data using the partial least-squares method. J. Chem. Inf. Comput. Sci. 24, 20–24 (1984).

    Article  Google Scholar 

  21. P. Zagrodzki, H. Szmigiel, R. Ratajczak, et al., The role of selenium in iodine metabolism in children with goiter, Environ. Health Perspect. 108, 67–71 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. G. Bogye, G. Tompos, and G. Alfthan, Selenium depletion in hemodialysis patients treated with polysulfone membranes, Nephron 84, 119–123 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. D. Bonnefont-Rousselot, M. C. Jaudon, B. Issad, et al., Antioxidant status of elderly chronic renal patients treated by continuous ambulatory peritoneal dialysis, Nephrol. Dial. Transplant. 12, 1399–1405 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. I. Ceballos-Picot, V. Witko-Sarsat, M. Merad-Boudia, et al., Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radical Biol. Med. 21, 845–853 (1996).

    Article  CAS  Google Scholar 

  25. C. K. Chen, J. M. Liaw, J. G. Juang, et al., Antioxidant enzymes and trace elements in hemodialyzed patients, Biol. Trace Element Res. 58, 149–157 (1997).

    Article  CAS  Google Scholar 

  26. C. M. Loughrey, I. S. Young, J. H. Lightbody, et al., Oxidative stress in haemodialysis, Q. J. Med. 87, 679–683 (1994).

    CAS  Google Scholar 

  27. D. J. M. Malvy, M. J. Richard, J. Pengloan, et al., Abnormalities of antioxidant micronutrients status in hemodialysis patients, in Program and Abstract Book of the 5th International Meeting on Trace Elements in Medicine and Biology, Meribel, France, p. 152 (1996).

  28. M. J. Richard, V. Ducros, M. Foret, et al., Reversal of selenium and zinc deficiencies in chronic hemodialysis patients by intravenous sodium selenite and zinc gluconate supplementation. Time-course of glutathione peroxidase repletion and lipid peroxidation decrease. Biol. Trace Element Res. 39, 149–159 (1993).

    CAS  Google Scholar 

  29. M. D. Saint-Georges, D. J. Bonnefont, B. A. Bourely, et al., Correction of selenium deficiency in hemodialyzed patients. Kidney Int. 27(Suppl.), S274-S277 (1989).

    CAS  Google Scholar 

  30. B. Turan, E. Delilbasi, N. Dalay, et al., Serum Se and glutathione-peroxidase activities and their interaction with toxic metals in dialysis and renal transplantation patients, Biol. Trace Element Res. 33, 95–102 (1992).

    CAS  Google Scholar 

  31. S. Yoshimura, H. Suemizu, Y. Nomoto, et al., Plasma glutathione peroxidase deficiency caused by renal dysfunction. Nephron 73, 207–211 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. B. A. Zachara, A. Adamowicz, U. Trafikowska, et al., Blood Se and glutathione concentrations and glutathione peroxidase activity in patients with different stages of chronic renal failure, in 20. Arbeitstagung Mengen- und Spurenelemente, Jena, Germany, pp. 940–947 (2000).

  33. B. A. Zachara, D. Koterska, J. Manitius, et al., Selenium supplementation on plasma glutathione peroxidase activity in patients with end-stage chronic renal failure, Biol. Trace Element Res. 97, 15–30 (2004).

    Article  CAS  Google Scholar 

  34. A. Adamowicz, U. Trafikowska, A. Trafikowska, et al., Effect of erythropoietin therapy and selenium supplementation on selected antioxidant parameters in blood of uremic patients on long-term hemodialysis. Med. Sci. Monit. 8, 202–205 (2002).

    Google Scholar 

  35. M. Bonomini, V. Manfrini, A. Marini, et al., Hemodialysis with regenerated cellulosic membranes does not reduce plasma Se levels in chronic uremic patients. Artif. Organs 19, 81–85 (1995).

    PubMed  CAS  Google Scholar 

  36. J. S. Koenig, M. Fischer, E. Bulant, et al., Antioxidant status in patients on chronic hemodialysis therapy: impact of parenteral Se supplementation. Wien. Klin. Wochenschr. 109, 13–19 (1997).

    PubMed  CAS  Google Scholar 

  37. T. Zima, V. Tesar, O. Mestek, et al., Trace elements in end-stage renal disease. 2. Clinical implication of trace elements, Blood Purif. 17, 187–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. N. Avissar, D. B. Ornt, Y. Yagil, et al., Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Physiol. 35, C367-C375 (1994).

    Google Scholar 

  39. T. Nguyen-Khoa, Z. A. Massy, J. P. De Bandt, et al., Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment, Nephrol. Dial. Transplant. 16, 335–340 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. B. A. Zachara, A. Adamowicz, U. Trafikowska, et al., Decreased plasma glutathione peroxidase activity in uraemic patients, Nephron 84, 278–281 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagrodzki, P., Bartoń, H., Walas, S. et al. Selenium status indices, laboratory data, and selected biochemical parameters in end-stage renal disease patients. Biol Trace Elem Res 116, 29–41 (2007). https://doi.org/10.1007/BF02685916

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685916

Index Entries

Navigation