Advertisement

manuscripta mathematica

, Volume 95, Issue 1, pp 251–271 | Cite as

Pro-p galois groups of rank ≤4

  • Jochen Koenigsmann
Article

Abstract

Letp be a prime >2, letF be a field of characteristic ≠p containing a primitivep-th root of unity and letG F (p) be the Galois group of the maximal Galois-p-extension ofF. Ifrk G F (p)≤4 thenG F (p) is a free pro-p product of metabelian groups orG F (p) is a Demuškin group of rank 4.

Mathematics Subject Classification (1991)

Primary 12F10 Secondary 12J20 12G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AEJ]
    Arason, J., Elman, R., Jacob, B.: Rigid elements, valuations and realization of Witt rings. J. Alg.110, 449–467 (1987)zbMATHCrossRefGoogle Scholar
  2. [CM]
    Carson, A.B., Marshall, M.: Decomposition of Witt rings. Can. J. Math.34, 1276–1302 (1982)zbMATHGoogle Scholar
  3. [EK]
    Engler, A.J., Koenigsmann, J.: Abelian subgroups of pro-p Galois groups. To appear in Trans. AMS.Google Scholar
  4. [He]
    Heinemann, B.: On finite intersections of ‘Henselian valued’ fields. manuscr. math.52, 37–61 (1985)zbMATHCrossRefGoogle Scholar
  5. [HJ]
    Hwang, Y.S., Jacob, B.: Brauer group analogues of results relating the Witt ring to valuations and Galois theory. Can. J. Math.47 (3), 527–543 (1995)zbMATHGoogle Scholar
  6. [HP]
    Heinemann, B., Prestel, A.: Fields regularly closed with respect to finitely many valuations and orderings. Can. Math. Soc. Conference Proceedings4, 297–336 (1984)Google Scholar
  7. [JP]
    Jensen, C.U., Prestel, A.: Finitely generated pro-p-groups as Galois groups of maximalp-extensions of function fields over Qq, manusr. math.90, 225–238 (1996)zbMATHCrossRefGoogle Scholar
  8. [JW]
    Jacob, B., Ware, R.: A recursive description of the maximal pro-2 Galois group via Witt rings. Math. Z.200, 379–396 (1989)zbMATHCrossRefGoogle Scholar
  9. [Ko]
    Koenigsmann, J.: Fromp-rigid elements to valuations (with a Galois-characterization ofp-adic fields). J. reine angew. Math.465, 165–182 (1995)zbMATHGoogle Scholar
  10. [La]
    Labute, J.: Classification of Demushkin groups. Can. J. Math.19, 106–132 (1967)zbMATHGoogle Scholar
  11. [Mer]
    Merkurjev, A.S.:K 2 and the Brauer group. Contemp. Math.55, 529–547 (1986)Google Scholar
  12. [MS]
    Merkurjev, A.S., Suslin, A.A.:K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat.46, 1011–1046 (1982); Engl. transl.: Math. USSR Izv.21, no. 2, 307–340 (1983)Google Scholar
  13. [MW]
    Mináč, J., Ware, R.: Demuškin groups of rank ℕ0 as absolute Galois groups. manuscr. math.73, 411–421 (1991)CrossRefGoogle Scholar
  14. [Ne]
    Neukirch, J.: Freie Produkte pro-endlicher Gruppen und ihre Kohomologie. Archiv d. Math.22, 337–357 (1971)zbMATHCrossRefGoogle Scholar
  15. [Rib]
    Ribes, L.: Introduction to profinite groups and Galois cohomology. Queen’s Papers in Pure and Appl. Math.24, Kingston 1970Google Scholar
  16. [Se]
    Serre, J.-P.:Cohomologie Galoisienne. Berlin: Springer Lecture Notes5, 1965Google Scholar
  17. [Wa]
    Ware, R.: Galois groups of maximalp-extensions. Trans. AMS333 (2), 721–728 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Jochen Koenigsmann
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität KonstanzKonstanzGermany

Personalised recommendations