Advertisement

manuscripta mathematica

, Volume 95, Issue 1, pp 237–249 | Cite as

Small maximal pro-p Galois groups

  • Ido Efrat
Article

Abstract

For an odd primep we classify the pro-p groups of rank ≤4 which are realizable as the maximal pro-p Galois group of a field containing a primitive root of unity of orderp.

Mathematics Subject Classification (1991)

Primary 12F10 Secondary 12G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arason, J.K., Elman, R., Jacob, B.: Rigid elements, valuations, and realization of Witt rings. J. Algebra110, 449–467 (1987)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bröcker, L.: Characterization of fans and hereditarily pythagorean fields, Math. Z.151, 149–163 (1976)zbMATHCrossRefGoogle Scholar
  3. 3.
    Carson, A.B., Marshall, M.: Decomposition of Witt rings. Canad. J. Math.34, 1276–1302 (1982)zbMATHGoogle Scholar
  4. 4.
    Demuškin, S.P.: The group of a maximalp-extension of a number field. Izv. Akad. nauk SSSR, Ser. Mat.25, 329–346 (1961) (In Russian)Google Scholar
  5. 5.
    Demuškin, S.P: On 2-extensions of a local field. Sib. Math. J.4, 951–955 (1963) (In Russian)Google Scholar
  6. 6.
    Efrat, I.: Free pro-p product decompositions of Galois groups. Math. Z.225, 245–261 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Efrat, I.: Finitely generated pro-p Galois groups ofp-henselian fields. J. Pure Appl. Algebra (to appear)Google Scholar
  8. 8.
    Efrat, I., Haran, D.: On Galois groups over pythagorean and semi-real closed fields. Isr. J. Math.85, 57–78 (1994)zbMATHGoogle Scholar
  9. 9.
    Engler, A., Koenigsmann, J.: Abelian subgroups of pro-p Galois groups. Amer. Math. Soc. Trans. (to appear)Google Scholar
  10. 10.
    Hwang, Y.S., Jacob, B.: Brauer group analogues of results relating the Witt ring to valuations and Galois theory. Canad. J. math.47, 527–543 (1995)zbMATHGoogle Scholar
  11. 11.
    Jacob, B., Ware, R.: A recursive description of the maximal pro-2 Galois group via Witt rings. Math. Z.200, 379–396 (1989)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jacob, B., Ware, R.: Realizing dyadic factors of elementary type Witt rings and pro-2 Galois groups. Math. Z.208, 193–208 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Labute, J.P.: Classification of Demushkin groups. Cand. J. Math.19, 106–132 (1967)zbMATHGoogle Scholar
  14. 14.
    Marshall, M.: Abstract Witt Rings. (Queen’s Pap. Pure Appl. Math.57), Kingston: Queen’s University 1980zbMATHGoogle Scholar
  15. 15.
    Merkurjev, A.S.:K 2 of fields and the Brauer group. Contemp. Math.55, Part II, 529–546 (1986)Google Scholar
  16. 16.
    Merkurjev, A.S., Suslin, A.A.:K-cohomology of Brauer-Severi varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR, Ser. Mat.46, 1011–1046 (1982) (In Russian); Math. USSR Izv.21, 307–340 (1983)Google Scholar
  17. 17.
    Mináč, J., Ware, R.: Pro-2 Demuškin groups of rank ℕ0 as Galois groups of maximal 2-extensions of fields. Math. Ann.292, 337–353 (1992)CrossRefGoogle Scholar
  18. 18.
    Neukirch, J.: Freie Produkte pro-endlicher Gruppen und ihre Kohomologie. Arch. Math.22, 337–357 (1971)zbMATHCrossRefGoogle Scholar
  19. 19.
    Scharlau, W.: Quadratic and Hermitian Forms. Berlin: Springer 1985zbMATHGoogle Scholar
  20. 20.
    Serre, J.-P.: Structure de certains pro-p-groupes (d’aprés Demuškin). Séminaire Bourbaki252, 1–11 (1962/63)Google Scholar
  21. 21.
    Serre, J.-P.: Cohomologie Galoisienne. Springer Lect. Notes Math.5, Berlin: Springer 1965zbMATHGoogle Scholar
  22. 22.
    Szczepanik, L.: Fields and quadratic forms schemes with the index of the radical not exceeding 16. Ann. Math. Sil.13, 23–46 (1985)Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Ido Efrat
    • 1
  1. 1.Department of Mathematics and Computer ScienceBen Gurion University of the NegevBe’er-ShevaIsrael

Personalised recommendations