Advertisement

manuscripta mathematica

, Volume 95, Issue 1, pp 213–224 | Cite as

A remark on the geometry of elliptic scrolls and bielliptic surfaces

  • C. Ciliberto
  • K. Hulek
Article
  • 37 Downloads

Keywords

Exact Sequence Line Bundle Elliptic Curve Normal Bundle Hilbert Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) VII 414–452 (1957)Google Scholar
  2. [ADHPR]
    Aure, A., Decker, W., Hulek, K., Popescu, S., Ranestad, K.: Szygies of abelian and bielliptic surfaces. International J. of Mathematics (to appear)Google Scholar
  3. [B]
    Beauville, A.:Complex algebraic surfaces. LMS Lecture Notes Series68, Cambridge: Cambridge University Press 1983zbMATHGoogle Scholar
  4. [CLM]
    Ciliberto, C., Lopez, A., Miranda, R.: Projective degenerations of K3 surfaces, Gaussian maps and Fano threefolds. Invent. Math.114, 641–667 (1993)zbMATHCrossRefGoogle Scholar
  5. [Ha]
    Hartshorne, R.:Algebraic Geometry. Berlin-Heidelberg-New York: Springer 1977zbMATHGoogle Scholar
  6. [HVdV]
    Hulek, K., Van de Ven, A.: The Horrocks-Mumford bundle and the Ferrand construction. manuscripta math.50, 313–335 (1985)zbMATHCrossRefGoogle Scholar
  7. [Se]
    Serrano, F.: Divisors on bielliptic surfaces and embeddings in ℙ4. Math. Z.203, 527–533 (1990)zbMATHCrossRefGoogle Scholar
  8. [I]
    Igusa, J.:Theta Functions. Berlin-Heidelberg-New York: Springer 1972zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • C. Ciliberto
    • 1
  • K. Hulek
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Tor Vergata (Roma II)RomaItaly
  2. 2.Institut für MathematikUniversität HannoverHannoverGermany

Personalised recommendations