manuscripta mathematica

, Volume 95, Issue 1, pp 189–212 | Cite as

Theη-form and a generalized maslov index

  • U. Bunke
  • H. Koch


Given a family {L 0(b,L 1(b)} bB of pairs of transverse Lagrangian subspaces of a hermitean symplectic vector space we define a family of Dirac operators on the unit interval and consider itsη-formη(L 0,L 1) εΘ*(B). To a family {L 0(b,L 1(b,L 2(b)} bB of pairwise transverse Lagrangian subspaces we associate the cocycleη(L 0,L 1)+η(L 1,L 2)+η(L 2,L 1) which is a closed form. We identify its cohomology class with a generalization to families of the triple Maslov index.

Mathematics Subject Classification (1991)

58G10 58G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berlin, N., Getzler, E., and Vergne, M.:Heat Kernels and Dirac Operators. Springer-Verlag Berlin-Heidelberg-New York, 1992Google Scholar
  2. [2]
    Bismut, J.M. and Cheeger, J.:η-invariants and their adiabatic limits.J. AMS 2, 33–70 (1990)Google Scholar
  3. [3]
    Bismut, J.M. and Cheeger, J.: Families index for manifolds with boundary, superconnections, and cones. I. Families of manifolds with boundary and Dirac operators.J. Funct. Anal. 89, 313–363 (1990)zbMATHCrossRefGoogle Scholar
  4. [4]
    Bunke, U.: A K-theoretic relative index theorem and Callias-type operators.Math. Ann. 303, 241–279 (1995)zbMATHCrossRefGoogle Scholar
  5. [5]
    Bunke, U.: On the gluing problem for theη-invariant.J. Diff. Geom. 41, 397–448 (1995)zbMATHGoogle Scholar
  6. [6]
    Cheeger, J., Gromov, M. and Taylor, M.: Finite propagation speed, kernel estimates for functions of the laplace operator and the geometry of complete Riemannian manifolds.J. Diff. Geom. 17, 15–53 (1982)zbMATHGoogle Scholar
  7. [7]
    Dai, X. and Zhang, W.: Higher spectral flow. Preprint, 1996Google Scholar
  8. [8]
    Guillemin, V. and Sternberg, S.:Geometric asymptotics. Math Surveys14, A.M.S. Providence, R. I, 1977Google Scholar
  9. [9]
    Lesch, M. and Wojciechowski, K.P.: On theη-invariant of generalized Atiyah-Patodi-Singer problems.Illinois. J. Math. 40, 30–46 (1996)zbMATHGoogle Scholar
  10. [10]
    Lion, G. and Vergne, M.:The Weil representation, Maslov index and theta series. Birkhäuser Boston, Basel, Stuttgart, 1980zbMATHGoogle Scholar
  11. [11]
    Melrose, R.B. and Piazza, P.: Families of Dirac operators, boundaries, and theb-calculus. Preprint, 1996Google Scholar
  12. [12]
    Wall, C.T.C.: Non-additivity of the signature.Invent. Math. 7, 269–274 (1969)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • U. Bunke
    • 1
    • 2
  • H. Koch
    • 1
    • 2
  1. 1.Mathematisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergGermany

Personalised recommendations