manuscripta mathematica

, Volume 94, Issue 1, pp 271–286 | Cite as

Isometric embedding inR 3 of complete noncompact nonnegatively curved surfaces

  • Hong Jiaxing


Positive Curvature Isometric Embedding Geodesic Curvature Nonnegative Curvature Spherical Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    Aleksandrov, A.D., Intrinsic geometry of convex surfaces, Moscow, 1948, German transl., Academie Verlag Berlin, 1955.Google Scholar
  2. [CE]
    Cheeger, J. and Ebin, D., Comparison theorems in Riemannian geometry, North-Holland Publishing Company, 1975.Google Scholar
  3. [CY]
    Cheng, S.Y. and Yau, S.T., On the regularity of n-dimensional Minkowski problem, Comm. Pure Appl. Math., 29(1976), 495–516.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [CDK]
    Cheng,S.S., De Carmo,M. and Kobayashi,S., Minimal submanifolds of a sphere with second fundamental form constant length, Functional Analysis and Related Fields (volume in Honor of M.H.Stone), Springer-verlage, 1970, 59–75.Google Scholar
  5. [GL]
    Guan, P. and Li, Y. The Weyl problem with nonnegative Gauss curvature. J. Differential Geometry, 39(1994) 331–342.zbMATHMathSciNetGoogle Scholar
  6. [GW1]
    Greene, R. and Wu, H., Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent.Math., 25 (1974), 265–298.CrossRefMathSciNetGoogle Scholar
  7. [GW2]
    Greene, R. and Wu, H.,C convex functions and manifolds of positive curvature, Acta Math., 137 (1976), 209–245.CrossRefMathSciNetGoogle Scholar
  8. [GR]
    Gromov, M.L., and Rohklin, V.A., Embeddings and Immersions in Riemannian Geometry, Russian Mathematical Surveys, (1971), 1–57. Mat. Nauk, 25:5 (1970), 3–62.zbMATHMathSciNetGoogle Scholar
  9. [HE1]
    Heinz, E., on elliptic Monge-Ampere equations and Weyl’s embedding problem, Journal D’Analyse Mathematique, 7 (1959–1960), 1–52.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [HE2]
    Heins, E., Neue a priori Abschätzungen für den Ortsvektor einer Fläche positiver Gaussscher Krümmung durch ihr Linienelment, Math.Z., 74 (1960), 129–157.CrossRefMathSciNetGoogle Scholar
  11. [HO]
    Hong, J.X., Dirichlet problems for general Monge-Ampere equations, Math. Z., 209 (1992), 289–306.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [HZ]
    Hong, J.X. and Zuily, C., Isometric embedding inR 3 of the 2-sphere with non-negative curvature, Math.Z., 219(1995), 323–334.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [IA]
    Iaia, J.A., Isometric embeddings of surfaces with nonnegative curvature inR 3, Duke Math. Jour., 67(1992), 423–459.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [LI]
    Lin, C.S., The local isometric embedding inR 3 of two dimensional Riemanian manifolds with Gaussian curvature changing sign clearly, Comm. Pure Appl.Math., 39 (1986), 307–326.CrossRefMathSciNetGoogle Scholar
  15. [NI1]
    Nirenberg, L., The Weyl and Minkowski problems in Differential Geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337–394.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [NI2]
    Nirenberg, L., On nonlinear elliptic partial differential equations and Holder continuity, Comm. Pure Appl. Math., 6 (1953), 103–156.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [PO1]
    Pogorelov, A.V., Extrinsic geometry of convex surfaces (transl. Math. Monogr. Vol 35), Providence, RI, Amer. Math. Soc. 1973.Google Scholar
  18. [PO2]
    Pogorelov, A.V., An example of a two dimensional Riemannian metric not admitting a local realization inR 3, Dokl. Akad. Nauk. USSR., 198(1971), 42–43.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Hong Jiaxing
    • 1
  1. 1.Institute of MathematicsFudan UniversityShanghaiChina

Personalised recommendations