manuscripta mathematica

, Volume 94, Issue 1, pp 267–270 | Cite as

A generalization of the Buchstab equation

  • Pieter Moree


Letf be a multiplicative function and letΨ f (x, y) denote the incomplete multiplicative sum Σn≤x,P(n)≤y f(n), whereP(n) denotes the greatest prime factor ofn. A Buchstab- and a Hildebrand equation forΨ f (x, y) are derived.


Number Theory Prime Factor Arithmetical Progression Diophantine Equation Multiplicative Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Buchstab, A.A.: On those numbers in arithmetical progression all of whose prime factors are small in order of magnitude (Russian), Dokl. Akad. Nauk. SSSR67, 5–8 (1949).Google Scholar
  2. [2]
    Hildebrand, A.: On the number of positive integers ≤x and free of prime factors >y, J. Number Theory22, 289–307 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Hildebrand, A. and Tenenbaum, G.: On integers free of large prime factors, Trans. Amer. Math. Soc.296, 265–290 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Hildebrand, A. and Tenenbaum, G.: Integers without large prime factors, J. Théorie des Nombres de Bordeaux5, 411–484 (1993).zbMATHMathSciNetGoogle Scholar
  5. [5]
    Levin, B.V. and Fainleib, A.S: Application of some integral equations to problems of number theory, Russian Math. Surveys22, 119–204 (1967).zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Moree, P.: Psixyology and Diophantine equations, PhD thesis, Leiden, 1993.Google Scholar
  7. [7]
    Moree, P.: On the number ofy-smooth natural numbers ≤x representable as a sum of two integer squares, Manuscripta Math.80, 199–211 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Moree, P.: On a result of Levin and Fainleib involving multiplicative functions, MPI-preprint 46, Bonn, 1996.Google Scholar
  9. [9]
    Norton, K.K.: Numbers with small prime factors and the leastkth power non-residue, Mem. Amer. Math. Soc.106, AMS, Providence, Rhode Island, 1971.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Pieter Moree
    • 1
  1. 1.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations