Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 253–265 | Cite as

Some congruence property of modular forms

  • Shoyu Nagaoka
Article

Keywords

Prime Ideal Modular Form Fourier Coefficient Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen. Manuscripta Math.45, 273–288 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buhler, J., Crandall, R., Ernvall, R., and Metsänkylä, T,: Irregular primes and cyclotomic invariants to four million. Math. Comp.61, 151–153 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buhler, J., Crandall, R., Ernvall, R., Metsänkylä, T., and Shokrollahi, M. A.: Irregular primes and cyclotomic invariants to eight million. to appear in J. Sym. Comp.Google Scholar
  4. 4.
    Deligne, P.: Private communications. 1977, 1979Google Scholar
  5. 5.
    Igusa, J.: On Siegel modular forms of genus two. Am. J. Math.84, 175–200 (1962); II. ibid.86, 392–412 (1964)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Igusa, J.: On the ring of modular forms of degree two over ℤ. Am. J. Math.101, 149–183 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Katsurada, H.: An explicit formula for Siegel series. preprint 1997Google Scholar
  8. 8.
    Kaufhold, G.: Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades. Math. Ann.137, 454–476 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Krieg, A.: The Maaß spaces on the Hermitian half-space of degree 2. Math. Ann.289, 663–681 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Maass, H.: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Dan. Vid. Selsk.34, Nr. 7 (1964)Google Scholar
  11. 11.
    Murase, A. and Sugano, T.: Shintani functions, Rankin-Selberg convolution and the restriction of Eisenstein series, preprint 1996Google Scholar
  12. 12.
    Nagaoka, S.:P-adic properties of Siegel modular forms of degree 2. Nagoya Math. J.71, 43–60 (1978)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nagaoka, S.: Some congruence properties of Eisenstein series. Hokkaido Math. J.8, 239–243 (1979)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Nagaoka, S.: On Siegel series for Hermitian forms II. Proc. Japan Acad.64, 212–214 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Serre, J.-P.: Congruences et formes modulaires. Séminare Bourbaki, Exposé 416 (1972)Google Scholar
  16. 16.
    Siegel, C.L.: Über die Fourierschen Koeffizienten der Eisensteinschen Reihen. Mat. Fys. Medd. Dan. Vid. Selsk.34, Nr. 6 (1964); Collected Works III, 443–458 (1966)Google Scholar
  17. 17.
    Swinnerton-Dyer, H.P.F.: Onl-adic representations and congruences for coefficients of modular forms. Lecture Notes in Math. 350, 1–55 (1973), Springer VerlagCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Shoyu Nagaoka
    • 1
  1. 1.Department of MathematicsKinki UniversityOsakaJapan

Personalised recommendations