Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 243–252 | Cite as

LS category of classifying spaces and 2-cones

  • J. -B. GatsinziEmail author
Article
  • 36 Downloads

Abstract

LetX be a simply connected space of LS category two. We show that the LS category ofB aut X is not finite whenX is not coformal or satisfies Poincaré duality.

Subject Classifications

55 P 62 55 M 30 

Key words

rational homotopy 2-cone classifying space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. Baues and J.M. Lemaire,Minimal models in homotopy theory, Math. Ann. 225 (1977), 219–242.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Dold,Halbexacte Homotopiefunktoren, Lecture notes in mathematics, vol. 12 (1966), Springer-Verlag.Google Scholar
  3. 3.
    A. Dold and R. Lashoff,Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305.zbMATHMathSciNetGoogle Scholar
  4. 4.
    E. Dror and A. Zabrodsky,Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187–197.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Y. Félix and S. Halperin,Rational LS-category and its applications, Trans. A.M.S. 273 (1982), 1–17.zbMATHCrossRefGoogle Scholar
  6. 6.
    Y. Félix, S. Halperin, C. Jacobsson, C. Löfwall and J.-C. Thomas,The radical of the homotopy Lie algebra, Amer. J. of Math. 110 (1988), 301–322.zbMATHCrossRefGoogle Scholar
  7. 7.
    Y. Félix, S. Halperin and J.-C. Thomas,Engel elements in the homotopy Lie algebra, J. of Algebra 144 (1991), 67–78.zbMATHCrossRefGoogle Scholar
  8. 8.
    Y. Félix, S. Halperin, J.-M. Lemaire et J.C. Thomas.Mod p loop space homology, Inventiones math. 95 (1989), 247–262.zbMATHCrossRefGoogle Scholar
  9. 9.
    Y. Félix and J.-C. Thomas,Sur la structure des espaces de LS catégorie deux, Ill. Jour. Math. 30 (1986), 574–593.zbMATHGoogle Scholar
  10. 10.
    J.-B. Gatsinzi,LS category of classifying spaces, II, Bul. Belg. Math. Soc. 3 (1996), 243–248.zbMATHMathSciNetGoogle Scholar
  11. 11.
    J.-B. Gatsinzi,The homotopy Lie algebra of classifying spaces, to appear in J. Pure and Applied Algebra.Google Scholar
  12. 12.
    D.H. Gottlieb,Evaluation subgroups of homotopy groups, Amer. J. of math. 91 (1969), 729–756.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Halperin,Lectures on minimal models, Mémoire de la Société Mathématique de France, 9–10, 1983.Google Scholar
  14. 14.
    S. Halperin and J.M. Lemaire,Suites inertes dans les algèbres de Lie Graduées, Math. Scand. 61 (1987), 39–67.zbMATHMathSciNetGoogle Scholar
  15. 15.
    P. Lambrechts,Croissance des nombres de Betti rationnels de l’espace des lacets libres d’un espace biformel, Rapport 209, Séminaire de Mathématique, Université Catholique de Louvain, 1992.Google Scholar
  16. 16.
    D. Quillen,Rational homotopy theory, Annals of Math. (2) 90 (1969), 205–295.CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Schlessinger and J. Stasheff,Deformations theory and rational homotopy type, preprint.Google Scholar
  18. 18.
    J. Stasheff,Rational Poincaré duality spaces, Illinois J. of Math. 27 (1983), 104–109.zbMATHMathSciNetGoogle Scholar
  19. 19.
    D. Sullivan,Infinitesimal computations in topology, Publ. Math. I.H.E.S. 47 (1977), 269–331.zbMATHMathSciNetGoogle Scholar
  20. 20.
    D. Tanré,Homotopie rationnelle; modèles de Chen, Quillen, Sullivan, Lecture notes in mathematics, vol. 1025, Springer-Verlag, 1983.Google Scholar
  21. 21.
    G.H. Toomer,Lusternik-Schnirelmann category and Moore spectral sequence, Math. Z. 138 (1974), 123–143.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  1. 1.Freie Universität BerlinGermany

Personalised recommendations