Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 231–241 | Cite as

Geométrie des suites de Kronecker

  • Nicolas Chevallier
Article

Abstract

Let Θ be a element of the d-dimensional torus\(\mathbb{T}\) d andτ the translationτ(x)=x + Θ. When d=1 there existe some partitions of\(\mathbb{T}\) 1 which are associated withτ. We prove the existence of partitions of\(\mathbb{T}\) d which enjoyed the same kind of properties and whose elements (A i ) i≤n are convex polytopes. We also give a lower bound for the isotropic discrepancy of the sequence (nΘ) nεℕ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]:
    L. Babai, On Lovász Lattice Réduction and The Nearest Lattice Point Problem, Combinatorica,6, 1–13 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]:
    J. Beck, On the discrepancy of convex plane sets, Monatshefte für Mathematik105 no 2, 91–106 (1988) 1.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]:
    N. Chevallier, Meilleures approximations d’un élément du tore\(\mathbb{T}\) 2 et géométrie de la suite des multiples de cet élément, Acta Arithmetica,LXXXVIII.1, 19–35 (1996).MathSciNetGoogle Scholar
  4. [4]:
    M.R. Hermann, Sur la conjuguaison différentiable des difféomorphismes du cercle à des rotations, I.H.E.S., Publications Mathématiques, no49 (1979).Google Scholar
  5. [5]:
    J.C. Lagarias, Some New Results in Simultaneous Diophantine Approximation, Proc. of the Queen’s Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen’s Paper in Pure and Applied Math. No.54 453–474 (1980).Google Scholar
  6. [6]:
    J.C. Lagarias, Best Simultaneous Diophantine Approximations I, Growth Rates of Best Approximations denominators, Trans. Amer. Math. Soc.,72 Number 2, (1982).Google Scholar
  7. [7]:
    J.C. Lagarias, Best Simultaneous Diophantine Approximations II, Behavior of Consecutive Best Approximations, Pacific Journal of Mathematics102 Number 1, (1982).Google Scholar
  8. [8]:
    J.C. Lagarias, Geodesic Multidimensional continued Fractions, Proc. London Math. Soc. (3)69 464–488 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]:
    G. Larcher, On the distribution ofs-dimensional Kronecker sequences, Acta Arithmetica,LI, 335–347 (1988).MathSciNetGoogle Scholar
  10. [10]:
    G. Larcher, On the distribution of the multiples of ans-tuple of real numbers, Journal of Number Theory 31, 367–372 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]:
    W.M. Schmidt, Irregularities of distribution IX, Acta. Arith.27, 385–396 (1975).zbMATHMathSciNetGoogle Scholar
  12. [12]:
    V.T. Sos, On the Theory of Diophantine Approximation I, Acta Math. Acad. Sci. Hung.8, 461–472 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]:
    V.T. Sos, On the Theory of Diophantine Approximation, Ann. Univ. Sci. Budapest, Eutvos Sect. Math.1, 127–134 (1958).zbMATHGoogle Scholar
  14. [14]:
    W. Stute, Convergence rates for isotrope discrepancy, Ann. Prob,5, 707–723 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]:
    G. Szekeres and V.T. Sós, Rational approximation vectors, Acta Arithmetica,XLIX, 1988.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Nicolas Chevallier
    • 1
  1. 1.Université de haute AlsaceMulhouseFrance

Personalised recommendations