Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 211–229 | Cite as

On kodaira energy and adjoint reduction of polarized threefolds

  • Takao Fujita
Article

Keywords

Exact Sequence Line Bundle Exceptional Divisor Ample Line Bundle Canonical Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    L. Badescu,On ample divisors, Nagoya Math. J.86 (1982), 155–171.zbMATHMathSciNetGoogle Scholar
  2. [BFS]
    M. C. Beltrametti, M. L. Fania and A. J. Sommese,On the adjunction theoretic classification of projective varieties, Math. Ann.290 (1991), 31–62.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [BS]
    M. C. Beltrametti and A. J. Sommese,On the adjunction theoretic classification of polarized varieties, J. f. d. rein. u. angew. Math.427 (1992), 157–192.zbMATHMathSciNetGoogle Scholar
  4. [Ben]
    X. Benveniste,Sur le cone des 1-cycles effectifs en dimension 3, Math. Ann.272 (1985), 257–265.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [F1]
    T. Fujita,On polarized manifolds whose adjoint bundles are not semipositive, in “Algebraic Geometry; Sendai 1985,” Advanced Studies in Pure Math.,10, 1987, pp. 167–178.Google Scholar
  6. [F2]
    ———,Remarks on quasi-polarized varieties, Nagoya Math. J.115 (1989), 105–123.zbMATHMathSciNetGoogle Scholar
  7. [F3]
    ———,On Del Pezzo fibrations over curves, Osaka J. Math.27 (1990), 229–245.zbMATHMathSciNetGoogle Scholar
  8. [F4]
    ———,On Kodaira energy and adjoint reduction of polarized manifolds, manuscripta math.76 (1992), 59–84.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [F5]
    ———,On Kodaira energy and classification of polarized varieties (in Japanese), Sugaku45 (1993), 244–255.zbMATHMathSciNetGoogle Scholar
  10. [F6]
    ———,On Kodaira energy of polarized log varieties, J. Math. Soc. Japan48-1 (1996), 1–12.Google Scholar
  11. [KMM]
    Y. Kawamata, K. Matsuda and K. Matsuki,Introduction to the minimal model problem, in “Algebraic Geometry; Sendai 1985,” Advanced Studies in Pure Math.,10, 1987, pp. 283–360.MathSciNetGoogle Scholar
  12. [M]
    S. Mori,Threefolds whose canonical bundles are not numerically effective, Ann. of Math.116 (1982), 133–176.CrossRefMathSciNetGoogle Scholar
  13. [Sa]
    T. Sano,On classification of non-Gorenstein ℚ-Fano 3-folds of Fano-index 1, J. Math. Soc. Japan47-2 (1995), 369–380.MathSciNetCrossRefGoogle Scholar
  14. [So]
    A. J. Sommese,On the adjunction theoretic structure of projective varieties, in “Complex Analysis and Algebraic Geometry; Proc. Göttingen 1985,” Lecture Notes in Math. (Springer),1194, 1986, pp. 175–213.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Takao Fujita
    • 1
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations