manuscripta mathematica

, Volume 94, Issue 1, pp 111–132 | Cite as

On cartan homotopy formulas in cyclic homology

  • Masoud Khalkhali


Cyclic Homology Cyclic Cohomology Differential Grade Homotopy Formula Differential Grade Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Connes, A.: Non-commutative differential geometry, pub. Math. IHES 62 (1985), 41–144.zbMATHGoogle Scholar
  2. [2]
    Connes, A.: Noncommutative geometry, Academic Press (1994).Google Scholar
  3. [3]
    Cuntz, J. and Quillen, D.: Cyclic homology and nonsingularity, J. Amer. Math. Soc. 8 (1995) 373–442.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cuntz, J. and Quillen, D.: Operators on noncommutative differential forms and cyclic homology, in: Geometry, topology, and Physics for Raoul Bott (International Press, Cambridge, MA, 1995).Google Scholar
  5. [5]
    Cuntz, J. and Quillen, D.: Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995) 251–289.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Gerstenhaber, M.: the cohomology structure of an associative ring, Ann. Math. 78 (1963), 267–289.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Getzler, E.: Cartan homotopy formula and the Gauss-Manin connection in cyclic homology, Israel Math. Conf. Proc. 7(1993), 65–78.MathSciNetGoogle Scholar
  8. [8]
    Khalkhali, M.: An approach to operations on cyclic homology, J. of Pure and Applied Algebra 107(1996), 47–59.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Khalkhali, M.: On the entire cyclic cohomology of Banach algebras, Comm. in Algebra 22 (1994), 5861–5875.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Nistor, V.: A bivariant Chern character for p-summable quasihomomorphisms,K-theory 5 (1991), 193–211.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Quillen, D.: Algebra cochains and cyclic cohomology, publ. Math. IHES 68 (1989), 139–174.Google Scholar
  12. [12]
    Stasheff, J.: The intrinsic bracket on the deformation complex of an associative algebra, Journal of Pure and Applied Algebra 89 (1993) 231–235.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Zekri, R.: Perturbations of Cartan homotopy formula in cyclic homology, preprint.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Masoud Khalkhali
    • 1
  1. 1.Department of MathematicsUniversity of Western OntarioLondonCanada

Personalised recommendations