Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 95–110 | Cite as

p-harmonic functions on graphs and manifolds

  • Ilkka Holopainen
  • Paolo M. Soardi
Article

Abstract

We show that the LiouvilleD p -property is invariant under rough isometries between a Riemannian manifold of bounded geometry and a graph of bounded degree.

AMS Subject Classifications

31C12 31C20 53C20 58G03 94C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamini, I.: Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth. J. Theoret. Probab.4 631–637 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benjamini, I., Chavel, I., E. Feldman: Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash. Proc. London Math. Soc.72 215–240 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Coulhon, T.: Noyau de la chaleur et discrétisation d’une variété riemannienne. Israel J. Math.80 289–300 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coulhon, T., Saloff-Coste, L.: Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana11 687–726 (1995)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc.284 787–794 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grigor’yan, A.: On Liouville theorems for harmonic functions with finite Dirichlet integral. Math. Sb.132(174) 496–516 (1987) (Russian) [English transl.: Math. USSR Sb.69 485–504 (1988)]Google Scholar
  7. 7.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. (Oxford Mathematical Monographs) Oxford, New York, Tokyo: Clarendon Press 1993zbMATHGoogle Scholar
  8. 8.
    Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. AI Math. Diss.74 1–45 (1990)Google Scholar
  9. 9.
    Holopainen, I.: Positive solutions of quasilinear elliptic equations on Riemannian manifolds. Proc. London Math. Soc. (3)65 651–672 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Holopainen, I.: Rough isometries andp-harmonic functions with finite Dirichlet integral. Rev. Mat. Iberoamericana10 143–176 (1994)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Holopainen, I.: Solutions of elliptic equations on manifolds with roughly Euclidean ends. Math. Z.217 459–477 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kanai, M.: Rough isometries and combinatorial approximations of geometries of non-compact Riemannian manifolds. J. Math. Soc. Japan37 391–413 (1985)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kanai, M.: Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan38 227–238 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math.172 137–161 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lyons, T.: Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differential Geometry26 33–66 (1987)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lyons, T., Sullivan, D.: Function theory, random paths and covering spaces. J. Differential Geometry19 299–323 (1984)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Markvorsen, S., McGuinness, S., Thomassen, C.: Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces. Proc. London Math. Soc. (3)64 1–20 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Murakami, A., Yamasaki, M.: Nonlinear potentials on an infinite network. Mem. Fac. Sci. Shimane Univ.26 15–28 (1992)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Soardi, P.M.: Rough isometries and Dirichlet finite harmonic functions on graphs. Proc. Amer. Math. Soc.119 1239–1248 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Soardi, P.M.: Potential Theory on Infinite Networks (Lecture Notes in Math., vol. 1590) Springer, Berlin Heidelberg New York, 1994zbMATHGoogle Scholar
  21. 21.
    Soardi, P.M., Yamasaki, M.: Parabolic index and rough isometries. Hiroshima Math. J.23 333–342 (1993)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Soardi, P.M., Yamasaki, M.: Classification of infinite networks and its application. Circuit Systems Signal Process12 133–149 (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Varopoulos, N.: Brownian motion and random walks on manifolds. Ann. Inst. Fourier (Grenoble)34 243–269 (1984)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Yamasaki, M.: Parabolic and hyperbolic infinite networks. Hiroshima Math. J.7 135–146 (1977)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Yamasaki, M.: Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ.13 31–44 (1979)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Ilkka Holopainen
    • 1
  • Paolo M. Soardi
    • 2
  1. 1.Department of MathematicsUniversity of HelsinkiFinland
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations