manuscripta mathematica

, Volume 94, Issue 1, pp 89–94 | Cite as

A note on quadratic congruences

  • Pavel Guerzhoy


The notion of quadratic congruences was introduced recently in [1]. In the present note we revise the original definition and present an explanation of the the phenomena.


Modular Form Eisenstein Series Cusp Form Arithmetic Point Quadratic Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balog, A., Darmon, H., Ono, K.: Congruences for Fourier coefficients of half-integral weight modular forms and special values ofL-functions, Analytic Number Theory, Vol. 1, (Allerton Park, IL, 1995), Progr. Math., 138, Birkhäuser, Boston, 1996, 105–128.Google Scholar
  2. 2.
    Bourbaki, N.: Algèbre commutative, Hermann, Paris, 1983.zbMATHGoogle Scholar
  3. 3.
    Cohen, H.: Sums involving the values at negative integers ofL-functions of quadratic characters, Math. Ann.217, 271–285 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenberg, R., Stevens, G.:p-adicL-functions andp-adic periods of modular forms, Invent. Math.,111, 407–447 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hida, H.: Elementary theory ofL-functions and Eisenstein series, London Math. Soc. Student Texts, 26, Cambridge University Press, 1993.Google Scholar
  6. 6.
    Kitagawa, K: On standardp-acidL-functions of families of elliptic cusp forms, Cont. Math.165, 81–110 (1994)MathSciNetGoogle Scholar
  7. 7.
    Kohnen, W.: Newforms of half-integral weight, J. reine angew. Math.333, 32–72 (1982)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kohnen, W., Zagier, D.: Values ofL-series of modular forms at the center of the critical strip, Invent. Math.64: 175–198 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Li, W. W.-C.: Newforms and functional equations., Math. Ann.212, 285–315 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Miyake, T.: Modular forms, Springer, 1989.Google Scholar
  11. 11.
    Panchishkin, A.A.: Non-ArchimedeanL-functions for Siegel and Hilbert modular forms, Lecture Notes in Math. 1471, Springer, 1991.Google Scholar
  12. 12.
    Stevens, G.: Λ-adic modular forms of half-integral weight and Λ-adic Shintani lifting, Contemp. Math.174, 129–151 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Pavel Guerzhoy
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität MannheimMannheim 1Germany

Personalised recommendations