Advertisement

manuscripta mathematica

, Volume 94, Issue 1, pp 45–73 | Cite as

Noncommutative spectral geometry of riemannian foliations

  • Yuri A. Kordyukov
Article

Summary

We construct spectral triples in a sense of noncommutative differential geometry, associated with a Riemannian foliation on a compact manifold, and describe its dimension spectrum.

Keywords

Elliptic Operator Pseudodifferential Operator Principal Symbol Elementary Operator Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniano, J., Uhlmann, G.: A functional calculus for a class of pseudodifferential operators with singular symbols. Proc. Symp. Pure Math.43, 5–16 (1985).MathSciNetGoogle Scholar
  2. 2.
    Atiyah, M.F.: Elliptic operators and compact groups. (Lecture Notes in Math. 401) Berlin Heidelberg New York: Springer 1974zbMATHGoogle Scholar
  3. 3.
    Beals, R., Greiner, P.: Calculus on Heisenberg manifolds. (Annals of Math. Studies 119) Princeton: Princeton Univ. Press 1988.zbMATHGoogle Scholar
  4. 4.
    Chernoff, P.R.: Essentiall self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.12(1973), 401–414.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Connes, A.: Sur la theorie non commutative de l’integration. In: Lecture Notes in Math. 725. Berlin Heidelberg New York: Springer 1979. 19–143.Google Scholar
  6. 6.
    Connes, A.: Noncommutative differential geometry. Inst. Hautes Etudes Sci. Publ. Math.62, 257–360 (1985).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Connes, A. Noncommutative geometry. London: Academic Press 1994.zbMATHGoogle Scholar
  8. 8.
    Connes, A.: Geometry from the spectral point of view. Lett. Math. Phys.34, 203–238 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. and Funct. Anal.5, 174–243 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fack, T., Skandalis, G.: Sur les representations et ideaux de laC*-algebre d’un feuilletage. J. Operator Theory8, 95–129 (1982).zbMATHMathSciNetGoogle Scholar
  11. 11.
    Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in microlocal analysis. Amer. J. Math.101, 915–959 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guillemin, V.: Gauged Lagrangian distributions. Adv. Math.102, 184–201 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guillemin, V.: A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math.55, 131–160 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guillemin, V.: Residue traces for certain algebras of Fourier integral operators. J. Funct. Anal.115, 391–417 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Guillemin, V., Uhlmann, G.: Oscillatory integrals with singular symbols. Duke Math. J.48, 251–267 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Greenleaf, A., Uhlmann, G.: Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J. Funct. Anal.89, 202–232 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hilsum, M., Skandalis, G.: MorphismesK-orientes d’espaces de feuilles et fonctorialite en theorie de Kasparov. Ann. Sci. Ecole Norm. Sup. (4)20, 325–390 (1987).zbMATHMathSciNetGoogle Scholar
  18. 18.
    Hörmander, L.: The analysis of linear partial differential operators I. Berlin Heidelberg New York Tokyo: Springer 1983.zbMATHGoogle Scholar
  19. 19.
    Hörmander, L.: The analysis of linear partial differential operators III. Berlin Heidelberg New York Tokyo: Springer 1985.zbMATHGoogle Scholar
  20. 20.
    Hörmander, L.: The analysis of linear partial differential operators IV. Berlin Heidelberg New York Tokyo: Springer 1986.Google Scholar
  21. 21.
    Kato, T.: Perturbation theory for linear operators. Berlin: Springer, 1980.zbMATHGoogle Scholar
  22. 22.
    Kontsevich, M., Vishik, S.: Determinants of elliptic pseudo-differential operators. Preprint MPI/94-30, 1994, 156pp.Google Scholar
  23. 23.
    Kontsevich, M., Vishik, S.: Geometry of determinants of elliptic operators. In: Functional analysis on the eve of the 21st century. Vol. I. (Progress in Mathematics. Vol. 132) Boston: Birkhäuser 1996.- 173–197.Google Scholar
  24. 24.
    Kordyukov, Yu.A.: Transversally elliptic operators onG-manifolds of bounded geometry. Russ. J. Math. Ph.2, 175–198(1994);3, 41–64(1995).zbMATHMathSciNetGoogle Scholar
  25. 25.
    Kordyukov, Yu.A.: Functional calculus for tangentially elliptic operators on foliated manifolds, In: Analysis and Geometry in Foliated Manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994. — Singapore: World Scientific 1995. — 113–136.Google Scholar
  26. 26.
    Kordyukov, Yu.A.: Semiclassical spectral asymptotics on a foliated manifold, to appear.Google Scholar
  27. 27.
    Kordyukov, Yu.A.: Noncommutative spectral geometry of transversally triangular Riemannian foliations, in preparation.Google Scholar
  28. 28.
    Molino, P.: Riemannian Foliations, Progress in Math. no. 73, Basel Boston: Birkhäuser, 1988.zbMATHGoogle Scholar
  29. 29.
    Reinhart, B.L.: Differential Geometry of Foliations. Berlin Heidelberg New York: Springer 1983.zbMATHGoogle Scholar
  30. 30.
    Wodzicki, M.: Noncommutative residue. Part I. Fundamentals. In: K-theory, arithmetic and geometry (Moscow, 1984–86), Lecture Notes in Math. 1289. Berlin Heidelberg New York: Springer 1987. — 320–399.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Yuri A. Kordyukov
    • 1
  1. 1.Department of MathematicsUfa State Aviation Technical UniversityUfaRussia

Personalised recommendations