manuscripta mathematica

, Volume 93, Issue 1, pp 273–281 | Cite as

Fundamental group of a class of rational cuspidal curves

  • E. Artal Bartolo


Fundamental Group Euler Class Triangle Group Smooth Projective Surface Irreducible Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CM]
    H.S.M. Coxeter, W.O.J. Moser,Generators and relations for discrete groups, Springer-Verlag, 1957.Google Scholar
  2. [D]
    A. Degtyarev,Quintics in ℂp2 with nonabelian fundamental group, Preprint MPI für Mathematik (1995).Google Scholar
  3. [tD]
    T. tom Dieck,Symmetric homology planes, Math. Ann.286 (1990), 143–152.zbMATHCrossRefGoogle Scholar
  4. [FZ]
    H. Flenner, M. Zaidenberg,On a class of rational cuspidal curves, Preprint (1995).Google Scholar
  5. [F]
    T. Fujita,On the topology of non-complete surfaces, J. Fac. Sci. Univ. Tokyo Sect. 1A Math.29 (1982), 503–566.zbMATHGoogle Scholar
  6. [GAP]
    J. Neubüser, M. Schönert et al.,Group, Algorithms and Programming, It is avalaible via anonymous ftp from Scholar
  7. [Z]
    O. Zariski,On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math.51 (1929), 305–328.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • E. Artal Bartolo
    • 1
  1. 1.Departmento de Matemáticas. Campus Plaza de San FranciscoUniversidad de ZaragozaZaragozaSpain

Personalised recommendations