Advertisement

manuscripta mathematica

, Volume 93, Issue 1, pp 219–245 | Cite as

On serre-duality for coherent sheaves on rigid-analytic spaces

  • Peter Beyer
Article
  • 162 Downloads

Keywords

Canonical Isomorphism Coherent Sheave Coherent Sheaf Surjective Morphism Closed Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBD]
    Baldassari, F., Bosch, S., Dwork, B.: p-adic Analysis, LNM 1454 (1990)Google Scholar
  2. [BGR]
    Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedian analysis. Springer (1984)Google Scholar
  3. [Bo]
    Bosch, S.: Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume. Math. Ann. 229, 25–45 (1977)zbMATHCrossRefGoogle Scholar
  4. [Ch]
    Chiarellotto, B.: Duality in Rigid Analysis, in [BBD]Google Scholar
  5. [H]
    Hartshorne, R.: Algebraic Geometry. Springer (1977)Google Scholar
  6. [K 1]
    Kiehl, R.: Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 256–273 (1967)zbMATHCrossRefGoogle Scholar
  7. [K 2]
    Kiehl, R.: Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 191–214 (1967)zbMATHCrossRefGoogle Scholar
  8. [L 1]
    Lütkebohmert, W.: Steinsche Räume in der nichtarchimedischen Funktionentheorie. Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 6 (1973)Google Scholar
  9. [L 2]
    Lütkebohmert, W.: Vektorraumbündel über nichtarchimedischen holomorphen Räumen. Math. Z. 152, 127–143 (1977)zbMATHCrossRefGoogle Scholar
  10. [LC]
    Grothendieck, A.: Local Cohomology. LNM 41 (1967)Google Scholar
  11. [Li]
    Lipman, J.: Dualizing Sheaves, Differentials and Residues on Algebraic Varieties, Asterisque 117 (1984)Google Scholar
  12. [P]
    van der Put, M.: Serre duality for rigid analytic spaces. Indag. Mathem., N.S. 3 (2), 219–235 (1992)zbMATHCrossRefGoogle Scholar
  13. [S 1]
    Serre, J.-P.: Local Fields. Springer (1979)Google Scholar
  14. [S 2]
    Serre, J.-P.: Algèbre Locale, Multiplicités. LNM 11 (1989)Google Scholar
  15. [SGA II]
    Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux. North-Holland, Amsterdam (1968)Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Peter Beyer
    • 1
  1. 1.Abt. Reine MathematikUniversität UlmUlmGermany

Personalised recommendations