Advertisement

manuscripta mathematica

, Volume 93, Issue 1, pp 163–176 | Cite as

On tensor representations of knot algebras

  • Tammo tom Dieck
Article

Summary

The fact that a Yang-Baxter operator defines tensor representations of the Artin braid group has been used to construct knot invariants. The main purpose of this note is to extend the tensor representations of the Artin braid group to representations of the braid groupZ B k associated to the Coxeter graphB k. This extension is based on some fundamental identities for the standardR-matrices of quantum Lie theory, here called four braid relations. As an application, tensor representations of knot algebras of typeB (Hecke, Temperley-Lieb, Birman-Wenzl-Murakami) are derived.

Subject classification

57M25 17B37 

Key words

Braid groups of Coxeter typeA andB Yang-Baxter operators tensor representations knot algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birman, S. J., and H. Wenzl: Braids, link polynomials and a new algebra. Trans. Amer. Math. Soc. 313, 249–273 (1989).zbMATHCrossRefGoogle Scholar
  2. 2.
    tom Dieck, T.: Symmetrische Brücken und Knotentheorie zu den Dynkin-Diagrammen vom TypB. J. reine angew. Math. 451, 71–88 (1994).zbMATHGoogle Scholar
  3. 3.
    tom Dieck, T., and R. Häring-Oldenburg: Quantum groups and cylinder braiding. To appear.Google Scholar
  4. 4.
    Dipper, R., and G. James: Representations of Hecke algebras of typeB n. J. of Algebra 146, 454–481 (1992).zbMATHCrossRefGoogle Scholar
  5. 5.
    Geck, M., and S. S. F. Lambropoulou: Markov traces and knot invariants related to Hecke algebras of typeB. To appear.Google Scholar
  6. 6.
    Häring-Oldenburg, R.: Über Birman-Wenzl-Algebren und ihre Verallgemeinerungen vom TypeB. Dissertation, Göttingen 1997.Google Scholar
  7. 7.
    Kassel, Chr.: Quantum groups. New York, Springer-Verlag 1995.zbMATHGoogle Scholar
  8. 8.
    Lambropoulou, S. S. F.: A study of braids in 3-manifolds. Thesis, Warwick 1993.Google Scholar
  9. 9.
    Lambropoulou, S. S. F.: Solid torus links and Hecke algebras ofB-type. Proc. of quantum topology, (D. Yetter ed.), 225–245. World Scientific, Singapore 1994.Google Scholar
  10. 10.
    Murakami, J.: The representations of theq-analogue of Brauer’s centralizer algebras and the Kauffman polynomial of links. Publ. Res. Inst. Math. Sci. 26, 935–945 (1990).zbMATHGoogle Scholar
  11. 11.
    Reshetikhin, N., and V. G. Turaev: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990).zbMATHCrossRefGoogle Scholar
  12. 12.
    Turaev, V. G.: Operator invariants of tangles andR-matrices. USSR Izvestia 35, 411–444 (1990).zbMATHCrossRefGoogle Scholar
  13. 13.
    Wenzl, H.: Quantum groups and subfactors of type B, C, and D. Commun. Math. Phys. 133, 383–432 (1990).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Tammo tom Dieck
    • 1
  1. 1.Mathematisches InstitutGöttingen

Personalised recommendations