manuscripta mathematica

, Volume 93, Issue 1, pp 129–135 | Cite as

A criterion for quasi-heredity and the characteristic module

  • Pu Zhang


The aim of this paper is to give a criterion for quasi-heredity by the existence of a faithful module, and a test for the characteristic module by using a property of faithful and partial tilting.


Direct Summand Characteristic Module Tilting Module Hereditary Algebra Faithful Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AP]
    Auslander, M. and Reiten, I.: Applications of contravarintly finite subcategories. Adv. Math. 86(1991), 111–152.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [B]
    Bongartz, K.: Tilted algebras, Springer Lecture Notes in Mathematics 903 (1981), 26–38.Google Scholar
  3. [CHU]
    Coelho, F.; Happel, D. and Unger, L.: Complements to partial tilting modules, J. Algebra 170(1)(1994), 165–183.CrossRefMathSciNetGoogle Scholar
  4. [CPS]
    Cline, E.; Parshall, B. and Scott, L.: Finite dimensional algebras and highest weight categories, J. reine angew. Math. 391(1988), 85–99.zbMATHMathSciNetGoogle Scholar
  5. [H]
    Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Notes Series 119, Cambridge University Press 119 (1988).Google Scholar
  6. [HU]
    Happel, D. and Unger, L.: Almost complete tilting modules, Proc. Amer. Math. Soc. 107(1989), 603–610.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [R]
    Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208(1991), 209–225.CrossRefMathSciNetGoogle Scholar
  8. [RS]
    Rickard, J. and Schofield, A.: Cocovers and tilting modules, Math. Proc. Camb. Phil. Soc. 106 (1989), 1–5.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [S]
    Scott, L. L.: Simulating algebraic geometry with algebra I: Derived categories and Morita theory, Proc. Symp. Pure Math. 47(1) (1987), 271–282.Google Scholar
  10. [Z]
    Zhang, P.: Quasi-hereditary algebras and tilting modules, Comm. Algebra 24(12)(1996), 3707–3717.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Pu Zhang
    • 1
  1. 1.Department of MathematicsUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations