manuscripta mathematica

, Volume 93, Issue 1, pp 49–57 | Cite as

On the ricci tensor of a real hypersurface of quaternionic hyperbolic space

  • Miguel Ortega
  • Juan de Dios Pérez


We prove the non-existence of Einstein real hypersurfaces of quaternionic hyperbolic space.

Mathematics Subject Classification (1991)

53C40 53C42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BERNDT, J.: “Real hypersurfaces in quaternionic space forms”, J. Reine. Angew. Math., 419(1991), 9–26.zbMATHMathSciNetGoogle Scholar
  2. [2]
    CECIL, T. E., RYAN, P. J.: “Focal sets and real hypersurfaces in complex projective space”, Trans. A.M.S., 269 No 2(1982), 481–499.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    CHEN, B. Y.: “Totally umbilical submanifolds of quaternion space forms”, J. Austr. Math. Soc., 26 (1978), 154–162.zbMATHCrossRefGoogle Scholar
  4. [4]
    ISHIHARA, S.: “Quaternion Kählerian manifolds and fibred riemannian spaces with Sasakian 3-structure”, Kodai Math. Sem. Rep., 25(1973), 321–329.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    KOBAYASHI S., NOMIZU, K.: “Foundations of differential geometry”, Vol 2, Interscience, New York, 1969.zbMATHGoogle Scholar
  6. [6]
    KON, M.: “Pseudo-Einstein real hypersurfaces in complex space forms”, J. Differential Geom., 14(1979), 339–354.zbMATHMathSciNetGoogle Scholar
  7. [7]
    MARTINEZ, A., PEREZ, J.D.: “Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl. (IV), 145 (1986), 355–384.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    MONTIEL, S.: “Real hypersurfaces of a complex hyperbolic space”, J. Math. Soc. Japan, Vol. 37, No 3 (1985), 515–535.zbMATHMathSciNetGoogle Scholar
  9. [9]
    B. O’NEILL, “The fundamental equations of a submersion”, Michigan Math. J., 13(1966), 459–469.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    [10] PAK, J.S.: “Real hypersurfaces in quaternionic Kaehlerian manifolds with constantQ-sectional curvature”, Kodai Math. Sem. Rep., 29(1977), 22–61.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Miguel Ortega
    • 1
  • Juan de Dios Pérez
    • 1
  1. 1.Departamento de Geometría y TopologíaUniversidad de GranadaGranadaSpain

Personalised recommendations