manuscripta mathematica

, Volume 93, Issue 1, pp 39–48 | Cite as

Ample divisors on the blow up of P3 at points

  • Flavio Angelini


Line Bundle Complete Intersection Base Locus Exceptional Divisor Hyperplane Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    F. Angelini,UCLA Thesis, (1995).Google Scholar
  2. [EL]
    L. Ein, R. Lazarsfeld,Seshadri constants on smooth surfaces, S. M. F. Astérisque,218, (1993), 177–186.Google Scholar
  3. [G]
    M. Green,A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom.,27, (1988), 155–159.zbMATHGoogle Scholar
  4. [GH1]
    P. Griffiths, J. Harris,Principles of algebraic geometry, Wiley Interscience, New York, 1978.zbMATHGoogle Scholar
  5. [GH2]
    P. Griffiths, J. Harris,On the Noether-Lefschetz theorem and some remarks on codimension two cycles, Math. Ann.,271, (1985), 31–51.zbMATHCrossRefGoogle Scholar
  6. [H]
    R. Hartshorne,Algebraic geometry, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  7. [L]
    R. Lazarsfeld,Lecture on Linear Series, (to appear).Google Scholar
  8. [Ki]
    S. Kim,Noether-Lefschetz locus for surfaces, Trans. Amer. Math. Soc.,324, (1991), 369–384.zbMATHCrossRefGoogle Scholar
  9. [Ku]
    O. Küchle,Ample line bundles on blown up surfaces, Math. Ann.304, (1996), 151–155.zbMATHCrossRefGoogle Scholar
  10. [Xu]
    G. Xu,Divisors on the blow up of the projective plane, Man. Math.86, (1995), 195–198.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Flavio Angelini
    • 1
  1. 1.Dipartimento di MatematicaUniversità dell’AquilaL’AquilaItaly

Personalised recommendations