Skip to main content
Log in

Classification of sub-Riemannian manifolds

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton University Press, Princeton (1960).

    MATH  Google Scholar 

  2. L. Sario and M. Nakai, Classification Theory of Reimmanian Surfaces, Springer-Verlag, Berlin, Heidelberg, and New York (1970).

    Google Scholar 

  3. T. Lyons and D. Sullivan, “Function theory, random paths and covering spaces,” J. Differential Geom.,19, No. 2, 299–323 (1984).

    MATH  Google Scholar 

  4. I. Holopainen, “Nonlinear potential theory and quasiregular mappings on Riemannian manifolds,” Ann. Acad. Sci. Fenn. Ser. AI. Math. Dissertationes,74 (1990).

  5. I. Holopainen and S. Rickman, “Classification of Riemannian manifolds in nonlinear potential theory,” Potential Anal.,2, No. 1, 37–66 (1993).

    Article  MATH  Google Scholar 

  6. I. Holopainen, “Positive solutions of quasilinear elliptic equations on Riemannian manifolds,” Proc. London Math. Soc.,65, No. 3, 651–672 (1992).

    Article  MATH  Google Scholar 

  7. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    MATH  Google Scholar 

  8. L. Hörmander, “Hypoelliptic second order differential equations,” Acta Math.,119, 141–171 (1967).

    Article  Google Scholar 

  9. S. K. Vodop’yanov and V. M. Chernikov, “Sobolev spaces and hypoelliptic equations,” in: Trudy Inst. Math. Vol. 29 [in Russian], Inst. Math. (Novosibirsk), Novosibirsk, 1995, pp. 7–62.

    Google Scholar 

  10. V. N. Chernikov and S. K. Vodop’yanov, “Sobolev spaces and hypoelliptic equations. I,” Siberian Adv. Math.,6, No. 7, 27–67 (1996).

    Google Scholar 

  11. N. V. Chernikov and S. K. Vodop’yanov, “Sobolev spaces and hypoelliptic equations. II,” Siberian Adv. Math.,6, No. 4, 64–96 (1996).

    Google Scholar 

  12. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford etc. (1993).

    MATH  Google Scholar 

  13. S. K. Vodop’yanov and I. G. Markina, “Fundamentals of nonlinear potential theory for hypoelliptic equations,” in: Trudy Inst. Math. Vol. 31 [in Russian], Inst. Math. (Novosibirsk), Novosibirsk, 1995, pp. 100–160.

    Google Scholar 

  14. S. K. Vodop’yanov, “Quasiconformal mappings on Carnot groups and their applications,” Dokl. Akad. Nauk,347, No. 4, 439–442 (1996).

    Google Scholar 

  15. S. K. Vodop’yanov, “Monotone functions and quasiconformal mappings on Carnot groups,” Sibirsk. Mat. Zh.,37, No. 6, 1269–1295 (1996).

    Google Scholar 

  16. S. Vodop’yanov, “Analysis on Carnot groups and quasiconformal mappings,” in: Abstracts: Ann Arbor Analysis workshop (Ann Arbor, August, 1995), University of Michigan, Ann Arbor, 1995, pp. 5–6.

    Google Scholar 

  17. S. K. Vodop’yanov, “Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations,” Sibirsk. Mat. Zh.,36, No. 2, 278–300 (1995).

    Google Scholar 

  18. R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes, Springer-Verlag, Berlin etc. (1971). (Lecture Notes in Math.;242.)

    MATH  Google Scholar 

  19. U. Hamenstädt, “Some regularity theorems for Carnot-Carathéodory metrics,” J. Differential Geom.,32, 819–850 (1990).

    MATH  Google Scholar 

  20. M. Gromov, Carnot-Carathéodory Spaces Seen from Within [Preprint, IHES], Bures-sur-Yvette (1994).

  21. R. S. Strichartz, “Sub-Riemannian geometry,” J. Differential Geom.,24, 221–263 (1986).

    Google Scholar 

  22. J. Mitchell, “On Carnot-Carathéodory metrics,” J. Differential Geom.,21, 35–45 (1985).

    MATH  Google Scholar 

  23. S. K. Vodop’yanov, “Sobolev classes and quasi-conformal mappings on Carnot-Carathéodory spaces,” in: Proceedings of Workshop on Geometry, Topology, and Physics, Campinas (Brazil), June 30–July 7, 1996, “Geometry, Topology, and Physics,” Walter de Gruyter, Berlin and New York, 1997, pp. 301–315.

    Google Scholar 

  24. G. A. Margulis and G. D. Mostow, “The differential of a quasi-conformal mapping of a Carnot-Carathéodory space,” in: Geometric and Functional Analysis,5, No. 2, 402–433 (1995).

  25. I. Serrin, “Isolated singularities of solutions of quasilinear equations,” Acta Math.,113, No. 3/4, 219–240 (1965).

    Article  MATH  Google Scholar 

  26. S. K. Vodop’yanov and I. G. Markina, “Exceptional sets for solutions to subelliptic equations,” Sibirsk. Mat. Zh.,36, No. 4, 805–818 (1995).

    Google Scholar 

  27. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  28. S. K. Vodop’yanov and A. V. Greshnov, “Analytic properties of quasiconformal mappings on Carnot groups,” Sibirsk. Mat. Zh.,36, No. 6, 1317–1327 (1995).

    Google Scholar 

  29. S. K. Vodop’yanov and A. D. Greshnov, “Analytic properties of quasiconformal mappings on Carnot groups,” Sibirks. Mat. Zh.,39, No. 4, 776–795 (1998).

    MATH  Google Scholar 

  30. S. K. Vodop’yanov and A. D. Ukhlov, “Approximately differentiable transformations and change of variables on nilpotent groups,” Sibirsk. Mat. Zh.,37, No. 1, 70–89 (1996).

    Google Scholar 

  31. P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. Math.,129, 1–60 (1989).

    Article  Google Scholar 

Download references

Authors

Additional information

The research was financially supported by the Russian Foundation for Basic Research (Grants 97-01-01092 and 96-01-01769).

Novosibirsk. Translated fromSibirskiî Matematicheskiî Zhurnal, Vol. 39, No. 6, pp. 1271–1289, November–December, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodop’yanov, S.K., Markina, I.G. Classification of sub-Riemannian manifolds. Sib Math J 39, 1096–1111 (1998). https://doi.org/10.1007/BF02674121

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674121

Keywords

Navigation