Siberian Mathematical Journal

, Volume 39, Issue 5, pp 927–935 | Cite as

Autostability of boolean algebras with distinguished ideal

  • N. T. Kogabaev


Boolean Algebra Recursive Function Principal Ideal Terminal Vertex Quotient Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Goncharov, “Nonautoequivalent constructivizations of atomic Boolean algebras,” Mat. Zametki,19, No. 6, 853–858 (1976).Google Scholar
  2. 2.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra i Logika,19, No. 1, 45–58 (1980).Google Scholar
  3. 3.
    D. E. Pal'chunov, “On the undecidability of theories of Boolean algebras with distinguished ideal,” Algebra i Logika,25, No. 3, 326–346 (1986).Google Scholar
  4. 4.
    D. E. Pal'chunov, “Countably-categorical Boolean algebras with distinguished ideals,” Studia Logica,46, No. 2, 121–135 (1987).zbMATHCrossRefGoogle Scholar
  5. 5.
    S. S. Goncharov, Countable Boolean Algebras and Decidability [in Russian], Nauchnaya Kniga, Novosibirsk (1996).zbMATHGoogle Scholar
  6. 6.
    Yu. G. Ventsov, “Algorithmic properties of branching models,” Algebra i Logika,25, No. 4, 369–383 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • N. T. Kogabaev

There are no affiliations available

Personalised recommendations