Advertisement

Holz als Roh- und Werkstoff

, Volume 49, Issue 9, pp 363–368 | Cite as

The suitability of high pressure sap-displacement for the preservative treatment of U.K. grown spruce and pine poles

  • P. D. Evans
  • R. B. Cunningham
  • C. F. Donnelly
  • S. D. Hainey
  • A. Bruce
  • G. M. Smith
  • B. King
Forschung und Praxis
  • 44 Downloads

Abstract

The concentration and radial distribution of copper, chromium, arsenic (CCA), and the depth of radial checking in U.K. grown, field exposed sitka and Norway spruce and Scots and Corsican pine poles treated by high pressure sap-displacement are examined. The concentration of CCA elements at a depth of 10 mm are significantly lower in sitka spruce. Norway spruce has similar concentrations of chromium to Scots and Corsican pine but has significantly lower concentrations of arsenic than both pine species and a lower concentration of copper than Scots pine. The slopes of metal concentration against radial depth are similar in Norway spruce and Scots pine but are significantly larger (steeper) and smaller (less steep) respectively in sitka spruce and Corsican pine. Checking is more severe in sitka spruce than in the other species and penetrates the preservative treated annulus thus greatly facilitating decay since micro-organisms have access to untreated non durable wood. The results suggest that high pressure sap-displacement is suitable for the treatment and protection of Scots and Corsican pine and probably Norway spruce but is madequate for the protection of sitka spruce.

Keywords

Arsenic Radial Distribution Metal Element Radial Depth Overhead Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die Eignung der Hochdruck-Saftverdrängung zum Holzschutz bei waldfrisch behandelten Fichten- und Kiefernpfählen

Zusammenfassung

Zwanzig 10 m lange Pfähle aus zwei Fichtenhölzern (Picea abtes undPicea sitchensis) und zwei Kiefernarten (Pinus sylvestris undPinus nigra varmaritima) wurden innerhalb von 9 Tagen nach dem Fällen unter Hochdruck mit 1,8%iger CCA-C-Lösung getränkt. Nach einjährigem Feldversuch wurden folgende Daten ermittelt: Konzentration und radiale Verteilung von Kupfer. Chrom und Arsen sowie die Tiefe der radialen Risse. In 10 mm Tiefe war in den Pfählen aus Sitka-Fichte die Konzentration der drei Elemente deutlich niedriger als bei den übrigen Proben. Die Pfähle ausPicea abies zeigten ähnliche Konzentrationen an Arsen wie die Kiefernproben, doch der Gehalt an Chrom und Kupfer war deutlich geringer. Die Rißbildung war vor allem bei Sitka-Proben viel stärker ausgeprägt als bei den anderen Holzarten. Die Risse reichten tiefer als die mit Holzschutzmitteln durchtränkte Sehicht, so daß Mikroorganismen das nicht behandelte Holz im Innern leicht befallen können. Die Hochdruck behandlung von saftfrischem Holz erweist sich als geeignete Schutzmaßnahme für die beiden untersuchten Kiefernhölzer und bedingt fürPicea abies, nicht aber für Sitka-Holz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Büsgen, M.; Münch, E. 1929: The structure and life of forest trees. 3rd Edn., London: Chapman HallGoogle Scholar
  2. Butcher, J. A. 1971: Colonisation by fungi of Pinus radiata sapwood treated with a copper-chrome-arsenate preservative. J. Inst. Wood Sci. 5(4):16–25.Google Scholar
  3. Chalk, L. 1951: Water and growth of Douglas-fir. Q. J. For. 45(4):237–242Google Scholar
  4. Chin, C. W.; Watkins, J. B.; Greaves, H. 1986 Recent advances in oilbased preservative emulsions in Australia. Proc. 22nd For. Prod. Res. Conf. Australia. 1(1):1–13.Google Scholar
  5. Dunleavy, J. A.; Balfe, D. J.; Prendergast, J. P. 1973: The use of spruce for transmission poles. Rec. Ann. Conv. B.W.P.A. 8:149–172Google Scholar
  6. Evans, P. D.; Smith, G. M.; King, B. 1987: The effectiveness of pressurised sap-displacement treatment of U. K. grown spruce and pine for use as overhead line supports. J. Inst. Wood. Sci. 11(1):13–16Google Scholar
  7. Evans, P. D.; Smith, G. M.; King, B. 1988: The decay resistance of four U.K. grown softwoods in soil contact with reference to their use as overhead line supports. Mat. u. Org. 23(3):197–207Google Scholar
  8. Fowlie, I. M. 1981: Investigation into the use of home grown spruce poles for use as overhead line supports. Rec. Ann. Conv. B.W.P.A. 8:49–58Google Scholar
  9. Fowlie, I. M. 1985: Personal communicationGoogle Scholar
  10. Fowhe, J. M., Sheard, L. 1983: Developments in the use of home grown spruce poles for use as overhead line supports. Rec. Ann. Conv. B.W.P.A. 8:1–12.Google Scholar
  11. Harding, T. 1988: British softwoods properties and uses. For. Comm. Bull. 77 London, HMSOGoogle Scholar
  12. Henningsson, B. 1982: The preservative treated utility pole in service. Research and experiences in Sweden. Proc. Canad. Wood Press. Assoc. 3:5–22Google Scholar
  13. Koppers-Hicksons. 1989: Personal communicationGoogle Scholar
  14. Kumar, S.; Morrell, J. J. 1989: Penetration and absorption of different, CCA compositions in six western conifers. For. Prod. J. 39(10):19–24Google Scholar
  15. McMahon, W.; Hill, C.M.; Koch, F.C. 1942: Greensalt—A new preservative for wood. Proc. Amer. Wood Press. Assoc. 38:334–348Google Scholar
  16. Mutandadzi, B. T.; Evans, P. D. 1990: The susceptibility to sludging of sulphate and oxide CCA. Internat. Res. Group on Wood Pres. Document No: IRG/WP/3599Google Scholar
  17. Nilsson, T. 1982: Comments on soft rot attack in timbers treated with CCA preservatives: A document for discussion. Internal. Res. Group on Wood Pres. Document No: IRG/WP/1167.Google Scholar
  18. Przybylowicz, P. R.; Kropp, B. R.; Corden, M. E.; Graham, R. D. 1987: Colonization of Douglas-fir poles by decay fungi during air-seasoning. For. Prod. J. 37(4):17–23.Google Scholar
  19. Shorland, F. B.; Mason, C. G. W. 1974: Intern report on world survey of sap-displacement impregination of timber. Internat. Res. Group on Wood Pres. Document No: IRG/WP/329Google Scholar
  20. Trumble, W. P.; Messina, E. E. 1986: Performance results of wood treated with CCA-PEG. Internat. Res. Group on Wood Pres. Document No. IRG/WP/3363Google Scholar
  21. Williams, A. J. 1972: Use of atomic-absorption spectrophotometry for the determination of copper, chromium, and arsenic in preserved wood. Analyst 97(1151):104–110.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. D. Evans
    • 1
  • R. B. Cunningham
    • 2
  • C. F. Donnelly
    • 2
  • S. D. Hainey
    • 3
  • A. Bruce
    • 3
  • G. M. Smith
    • 3
  • B. King
    • 3
  1. 1.Department of ForestryAustralian National UniversityCanberraAustralia
  2. 2.Department of StatisticsAustralian National UniversityCanberraAustralia
  3. 3.Department of Molecular and Life SciencesDundee Institute of TechnologyDundeeScotland

Personalised recommendations