Advertisement

Journal of Electronic Materials

, Volume 24, Issue 5, pp 565–572 | Cite as

Process modeling and simulation for Hg1-xCdxTe. Part I: Status of stanford university mercury cadmium telluride process simulator

  • José L. Meléndez
  • C. R. Helms
Article

Abstract

Details are provided concerning the basic point defect parameter set of the Stanford University mercury cadmium telluride process simulator (SUMerCad). The Hg interstitial and vacancy parameters are presented and justified for x = 0.2 material. In particular, values for the thermodynamic limits, diffusion coefficients, recombination rates, generation rates, and boundary conditions are specified and their determination methodology is reviewed. The parameters have been determined for overall consistency with a specific pool of experimental results which include studies of Hg self-diffusion, type-conversion, and the existence region. Our presentation will review the current state of the Hg1-xCdxTe modeling effort, and outline the future direction of the simulator, providing examples and discussion. Finally, some issues related to the future development of SUMerCad are discussed, including electric field effects, general boundary conditions, alternative junction formation processes, extended defects, and interdiffusion.

Key words:

Diffusion HgCdTe Modeling Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Meléndez and C.R. Helms,J. Electron. Mater. 22, 999 (1993).Google Scholar
  2. 2.
    C.L. Jones, M.J.T. Quelch, P. Capper and J.J. Gosney,J. Appl. Phys. 53, (1992).Google Scholar
  3. 3.
    H.F. Schaake,J. Electron. Mater. 14, 513 (1985).Google Scholar
  4. 4.
    H.R. Vydyanath,J. Electrochem. Soc. 128, 2609 (1981).CrossRefGoogle Scholar
  5. 5.
    H.R. Vydyanath and C.H. Hiner,J. Appl. Phys. 65, (1989).Google Scholar
  6. 6.
    M. Berding and A. Sher,J. Electron. Mater. 22 1005 (1993).Google Scholar
  7. 7.
    H.F. Schaake, J.H. Tregilgas, J.D. Beck, M.A. Kinch and B.E. Gnade,J. Vac. Sci. Technol. A 3 (1985).Google Scholar
  8. 8.
    H.F. Schaake and J.H. Tregilgas,J. Vac. Sci. Technol. A 4 (1986).Google Scholar
  9. 9.
    N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Electron. Mater. 22, 967 (1993).Google Scholar
  10. 10.
    Mei-Fan SungTang, Ph.D. Thesis, Stanford University (1987).Google Scholar
  11. 11.
    John-Sea Chen, Ph.D. Thesis, University of Southern California (1985).Google Scholar
  12. 12.
    J.L. Meléndez and C.R. Helms, Part II,J. Electron. Mater. 24, 573 (1995).Google Scholar
  13. 13.
    H.R. Vydyanath,J. Vac. Sci. Technol. B 9, 1716 (1991).CrossRefGoogle Scholar
  14. 14.
    J.L. Schmit and E.L. Stelzer,J. Electron. Mater. 7,65 (1968).Google Scholar
  15. 15.
    W. Scott, E.L. Stelzer and R. J. Hager,J. Appl. Phys. 47,1408 (1976).CrossRefGoogle Scholar
  16. 16.
    E.D. Jones, V. Thanbipillai and J.B. Mullin,J. Cryst. Growth 118, 1 (1992).CrossRefGoogle Scholar
  17. 17.
    N.A. Archer, H.D. Palfrey and A.F.W. Willoughby,J. Cryst. Growth 117, 177(1992).CrossRefGoogle Scholar
  18. 18.
    N. Archer and H. Palfrey,J. Electron. Mater. 20, 419 (1991).Google Scholar
  19. 19.
    D.A. Stevenson and M-F. S. Tang,J. Vac. Sci. Technol. B 9, 1615 (1991).CrossRefGoogle Scholar
  20. 20.
    M-F. S. Tang and D.A. Stevenson,J. Vac. Sci. Technol. A 6, 2650 (1988).CrossRefGoogle Scholar
  21. 21.
    M-F.S. Tang and D.A. Stevenson,J. Vac. Sci. Technol. A 7, 544(1989).CrossRefGoogle Scholar
  22. 22.
    V.V. Bogoboyashchii, A.I. Elizarov, V.l. Ivanov-Omskii and V.A. Petryakov,Sov. Phys. Semicond. 21, 888 (1987).Google Scholar
  23. 23.
    D.T. Dutton, E. O’Keefe, P. Capper, C.L. Jones, S. Mugfor, and C. Ard,Semicond. Sci. Technol. 8, S266 (1993).CrossRefGoogle Scholar
  24. 24.
    P. Koppel and K. Owens,J. Appl. Phys. 67, 6886 (1990).CrossRefGoogle Scholar
  25. 25.
    R. Fastow and Y. Nemirovsky,J. Vac. Sci. Technol. A 8,1245 (1990).CrossRefGoogle Scholar
  26. 26.
    C.L. Littler, E. Maldonado, X.N. Song, Z. Yu, J.L. Elkind, D.G. Sciler and J.R. Lowney,J. Vac. Sci. Technol. B 10,1466 (1992).CrossRefGoogle Scholar
  27. 27.
    J.L. Elkind,J. Vac. Sci. Technol. B 10, 1460 (1992).CrossRefGoogle Scholar
  28. 28.
    J.L. Meléndez and J. Beck,J. Electron. Mater. 22,993 (1993).Google Scholar
  29. 29.
    R.S. List,J. Electron. Mater. 22, 1012 (1993).Google Scholar
  30. 30.
    C.-H. Su, P.-K. Liao, and R.F. Brebrick,J. Electron. Mater. 12, 771 (1983).Google Scholar
  31. 31.
    R.F. Brebrick and J.P. Schwartz,J. Electron. Mater. 9, 771 (1980).CrossRefGoogle Scholar
  32. 32.
    L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.S. Chen and G. Bostrup,J. Vac. Sci. Technol. A 5, 3166 (1987).CrossRefGoogle Scholar
  33. 33.
    R. Kumar, M.B. Dutt, R. Nath, R. Chander and S.C. Gupta,J. Appl. Phys.68, 5564 (1990).CrossRefGoogle Scholar
  34. 34.
    M.V. Blackman, D.E. Charlton, M.D. Jenner, D.R. Purdy, J.T.M. Wotherspoon, C.T. Elliott and A.M. White,Electron. Lett. 23, 978 (1987).CrossRefGoogle Scholar
  35. 35.
    G. Bahir and E. Finkman,J. Vac. Sci. Technol. A 7, 348 (1989).CrossRefGoogle Scholar
  36. 36.
    P. Brogowski and J. Piotrowski,Semicond. Sci. Technol. 5, 530 (1990).CrossRefGoogle Scholar
  37. 37.
    N.Kh. Talipov, V.P. Popov, V.G. Remesnik and Z.A. Nal’kina,Sov. Phys. Semicond. 26, 175 (1992).Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1995

Authors and Affiliations

  • José L. Meléndez
    • 1
  • C. R. Helms
    • 1
  1. 1.Department of Electrical EngineeringStanford UniversityStanford

Personalised recommendations