Skip to main content
Log in

The pearlite reaction

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

A critical appraisal of theory and experiments for both isothermal and forced velocity pearlite is presented. It is concluded for binary systems that both the theoretical models for volume diffusion and boundary diffusion control are well-advanced and adequate for the purposes of experimental test. However, some ambiguity remains in the boundary diffusion model with respect to the thermodynamics of the boundary ”phase” region, so it is still not possible to predict absolute rates of transformation. The theoretical problem for ternary pearlites is also well understood, although rigorous theory seems intractable. A new perturbation procedure for definition of the optimal steady-state spacing is presented and amplified for both isothermal and forced velocity pearlite, and for both volume and boundary diffusion models. In terms of the critical spacing Sc for isothermal pearlite and the spacing at minimum undercooling Sm for forced velocity pearlite the predicted stability points are as follows: {fx2777-1} For isothermal pearlite these perturbation results correspond closely to the state of maximum entropy production rate while for forced velocity pearlite the correspondence is also satisfactory. A detailed analysis of the data leads us to reaffirm the author’s conclusions that the eutectoid reactions in Cu-12 pct Al and some related ternary alloys reported by Asundi and West are controlled by volume diffusion and that the eutectoid reaction in Al-78 Zn reported by Cheetham and Ridley is controlled by boundary diffusion. We conclude further after careful analysis that the pearlite reaction in Fe-0.8 C is controlled for the higher temperatures by volume diffusion of carbon in austenite. We are also led to state that the pearlite transformations in Fe-C-Mn and Fe-C-Ni occur for the most part in a nopartition regime and are therefore controlled by volume diffusion of carbon in austenite, while the transformations in Fe-C-Cr and Fe-C-Mo, being forced by thermodynamics to sustain partition of chromium and molybdenum, are controlled by phase boundary diffusion of the latter elements. nt]mis|M. P. PULS, formerly Postdoctoral Fellow, Department of Metallurgy and Materials Science, McMaster University, Hamilton, Ontario, Canada

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Boiling and R. H. Richman:Met. Trans., 1970, vol. 1, p.2095.

    Article  Google Scholar 

  2. Decomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., Interscience Publishers, 1962.

  3. W. H. Brandt:J Appl. Phys., 1945, vol. 16, p. 139.

    Article  CAS  Google Scholar 

  4. E. Scheil:Z. Metallk., 1946, vol. 37, p. 123.

    Google Scholar 

  5. C. Zener:AIME Trans., 1946, vol. 167, p. 550.

    Google Scholar 

  6. M. Hillert:Jernkont. Ann., 1957, vol. 141, p. 757.

    CAS  Google Scholar 

  7. W. A. Tiller:Liquid Metals and Solidification, p. 276, ASM, Cleveland, 1958.

    Google Scholar 

  8. K. A. Jackson and J.D. Hunt:Trans. TMS-AIME, 1966, vol. 236, p. 1129.

    CAS  Google Scholar 

  9. D. Turnbull:Acta Met., 1955, vol. 3, p. 55.

    Article  CAS  Google Scholar 

  10. J. W. Cahn:Acta Met., 1959, vol. 7, p. 18.

    Article  CAS  Google Scholar 

  11. C. S. Smith:Trans. ASM, 1953,vol. 45,p. 533.

    CAS  Google Scholar 

  12. J. M. Shapiro and J. S. Kirkaldy:Acta Met., 1968, vol. 16, p. 579.

    Article  CAS  Google Scholar 

  13. M. Hillert: Monograph and Report Series no. 33, p. 231, Institute of Metals, 1969.

  14. B. Sundquist:Acta Met., 1968, vol. 16, p. 1413.

    Article  CAS  Google Scholar 

  15. M. Hillert:Met. Trans., 1972, vol. 3, p. 2729.

    Article  CAS  Google Scholar 

  16. J. S. Kirkaldy and M. Mekawi: McMaster University, Hamilton, Ont., Canada, 1972, unpublished research.

  17. L. F. Donaghey and W. A. Tiller:Mater. Sci. Eng., 1968-69, vol. 3, p. 231.

    Article  CAS  Google Scholar 

  18. G. Bolze: Ph.D. Thesis, McMaster University, May 1970.

  19. M. Hillert:Acta Met., 1971, vol. 19, p. 769.

    Article  CAS  Google Scholar 

  20. G. Bolze, M. P. Puls, and J. S. Kirkaldy:Acta Met., 1972, vol. 20, p. 73.

    Article  CAS  Google Scholar 

  21. B.Sundquist:Acta Met., 1969, vol. 17, p. 967.

    Article  CAS  Google Scholar 

  22. J. S. Kirkaldy:Can. J. Phys., 1969, vol. 36, p. 907.

    Article  Google Scholar 

  23. G. R. Purdy, D. Weichert, and J. S. Kirkaldy:Trans. TMS-AIME, 1964, vol. 230,p.1025.

    CAS  Google Scholar 

  24. A. A. Popov and M. S. Mikhalev:Phys. Metals Metattogr., 1959, vol. 7, p. 36.

    Google Scholar 

  25. H. I. Aaronson, H. A. Domian, and G. M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 768.

    CAS  Google Scholar 

  26. M. Hillert:Proc. of the Int. Conf. on the Science and Technology of Iron and Steel, Supplement to Trans. Iron Steel Inst. Japan, 1971, vol. 11, p. 1153.

    Google Scholar 

  27. K. A. Jackson and B. Chalmers: inPrinciples of Solidification, by B. Chalmers, p. 201, John Wiley and Sons, New York, 1964.

    Google Scholar 

  28. J. S. Kirkaldy:Scripta Met., 1968, vol. 2, p. 565.

    Article  Google Scholar 

  29. S. O’Hara and A. Hellawell:Scripta Met., 1968, vol. 2, p. 107.

    Article  Google Scholar 

  30. F. C. Frank and K. E. Puttick:Acta Met., 1956, vol. 4, p. 206.

    Article  CAS  Google Scholar 

  31. J. S. Kirkaldy: inEnergetics in Metallurgical Processes IV, W. M. Mueller, ed., p. 197, Gordon and Breach Science Publishers, 1968. Note that the relations forS △T are in units of mm °C, not cm°C as indicated.

  32. M. Hillert: unpublished review onThe Eutectoid Transformation ofAustenite.

  33. W. A. Tiller: Cast Iron, ASM Seminar, Detroit, 1964.

  34. J. S. Kirkaldy:Can. J. Phys., 1964, vol. 42, p. 1447.

    Article  CAS  Google Scholar 

  35. L. Onsager:Phys. Rev., 1931, vol. 37, p. 405.

    Article  CAS  Google Scholar 

  36. H.E.Cline:E.Cline: Acta Met, 1971, vol. 19, p. 481.

    CAS  Google Scholar 

  37. J. W. Cahn and W. C. Hagel: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 131, Interscience Pub-lishers, 1962.

  38. D. Brown and N. Ridley:J. Iron Steel Inst., 1966, vol. 204, p. 811.

    CAS  Google Scholar 

  39. M. K. Asundi and D. R. F. West:J. Inst. Metals, 1966, vol. 94, p. 19.

    CAS  Google Scholar 

  40. G. E. Pellisier, M. F. Hawkes, W. A. Johnson, and R. F. Mehl:Trans. ASM, 1942, vol. 30, p. 1049.

    Google Scholar 

  41. M. Gensamer, E. B. Pearsall, W. S. Pellini, and J. R. Law:Trans. ASM, 1942, vol. 30, p. 983.

    CAS  Google Scholar 

  42. M. K. Asundi and D. R. F. West:J. Inst. Metals, 1966, vol. 94, p. 327.

    CAS  Google Scholar 

  43. D. Brown and N. Ridley:J. Iron Steel Inst., 1969, vol. 207, p. 1232.

    CAS  Google Scholar 

  44. M. Hillert: inDecomposition of Austenite by Diffusional Processes, V. F. Zackay and H. I. Aaronson, eds., p. 197, Interscience Publishers, 1962.

  45. J. E. Hilliard: General Electric Report No. 62-RL-3133M, Oct. 1962.

  46. E. Scheil and A. Lange-Weise:Arch. Eisenhüttenw., 1937, vol. 11, p. 93.

    Article  CAS  Google Scholar 

  47. C. R. Brooks and E. E. Stansbury:J. Iron Steel Inst, 1965, vol. 203, p. 514.

    Google Scholar 

  48. F. M. A. Carpay:Acta Met., 1970, vol. 18, p. 747.

    Article  CAS  Google Scholar 

  49. F. M. A. Carpay and J. Van den Boomgaard:Acta Met., 1971, vol. 19, p. 1279.

    Article  CAS  Google Scholar 

  50. B. L. Bramfitt and A. R. Marder:Int. Met. Soc. Proc, 1968, p. 43.

  51. D. Cheetham and N. Ridley:J. Inst. Metals, 1971, vol. 99, p. 371.

    CAS  Google Scholar 

  52. N. Ridley, D. Brown, and H. I. Malik: Manchester University, Manchester, England, 1971, unpublished research.

  53. J. W. Cahn and W. C. Hagel:Acta Met., 1963, vol. 11, p. 561.

    Article  CAS  Google Scholar 

  54. J. Fridberg and M. Hillert:Acta Met, 1970, vol. 18, p. 1253.

    Article  CAS  Google Scholar 

  55. J. H. Frye Jr.,, E. E. Stansbury, and D. L. McElroy:AIME Trans., 1953, vol. 197, p.219.

    Google Scholar 

  56. F. C. Hull, R. A. Colton, and R. F. Mehl:AIME Trans., 1942, vol. 150, p. 185.

    Google Scholar 

  57. E. S. Wajda:Acta Met., 1954, vol. 2, p. 184.

    Article  CAS  Google Scholar 

  58. J. J. Kramer, G. M. Pound, and R. F. Mehl:ActaMet., 1958, vol. 6, p. 763.

    CAS  Google Scholar 

  59. C. Wells, W. Batz, and R. F. Mehl:AIME Trans., 1950, vol. 188, p. 553.

    CAS  Google Scholar 

  60. R. Trivedi and G. M. Pound:J. Appl. Phys., 1967, vol. 38, p. 3569.

    Article  CAS  Google Scholar 

  61. C. Wert:Phys. Rev., 1950, vol. 79, p. 601.

    Article  CAS  Google Scholar 

  62. M. L. Plcklesimer, D. L. McElroy, T. M. Kegley, E. E. Stansbury, and J. H. Frye:AIME Trans., 1946, vol. 167, p. 550.

    Google Scholar 

  63. D. Chambers and J. S. Kirkaldy: McMaster University, Hamilton, Ont., Canada, 1972, unpublished research.

  64. W. A. Tiller:J. Appl. Phys., 1963, vol. 34, p. 3615.

    Article  Google Scholar 

  65. J. S. Kirkaldy: inEnergetics in Metallurgical Processes IV, W. M. Mueller, ed., p. 360, Gordon and Breach, Science Publishers, 1968.

  66. J. D. Hunt and J. P. Chilton:J. Inst. Metals, 1963, vol. 92, p. 21.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at a symposium on “The Cellular and the Pearlite Reactions,” held at the Detroit Meeting of The Metallurgical Society of AIME, October 20, 1971, under the sponsorship of the IMD Heat Treatment Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puls, M.P., Kirkaldy, J.S. The pearlite reaction. Metall Trans 3, 2777–2796 (1972). https://doi.org/10.1007/BF02652844

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652844

Keywords

Navigation