The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel

Abstract

The oxidation of nickel near 1000°C is accompanied by the generation of stresses parallel with the metal-oxide interface and of magnitude (~1500 psi) sufficient to elongate nickel rod, increase sheet area, and sharpen the angle of bend of ells and helices. A primary cause of this stress is identified with the formation of layers of new nickel oxide upon boundaries of columnar grains where nickel, diffusing through the oxide crystals, meets oxygen, diffusing along grain boundaries. Classical parabolic growth of the scale gives way to a slower quasilinear rate when the major site of new oxide formation is abruptly shifted to a system of grain boundaries lying close to the metal surface and created by recrystallization of the oxide under the influence of stress and high temperature. Another source of stress in the scale arises from the constantly changing area of the metal-oxide interface when oxidation is occurring upon curved metal surfaces. This stress reinforces that generated by deposition of material at oxide grain boundaries when the surface is convex and opposes it when the surface is concave.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Wagner:Z. physik. Chem., 1933, vol. 21B, pp. 25–41.

    Google Scholar 

  2. 2.

    N. B. Pilling and R. E. Bedworth:J. Inst. Metals, 1923, vol. 29, pp. 529–82.

    Google Scholar 

  3. 3.

    P. D. Dankov and P. V. Churaev:Doklady Akad. Nauk. SSSR, 1950, vol. 73, pp. 1221–24.

    CAS  Google Scholar 

  4. 4.

    U. R. Evans:Symp. on Internal Stresses in Metals and Alloys, pp. 291–310, London, 1947.

  5. 5.

    W. J. Moore:J. Chem. Phys., 1953, vol. 21, p. 1117.

    Article  CAS  Google Scholar 

  6. 6.

    H. Engell and F. Wever:Acta Met., 1957, vol. 5, pp. 695–702.

    Article  CAS  Google Scholar 

  7. 7.

    W. Jaenicke and S. Leistikow:Z. physik. Chem., N. F., 1958, vol. 15, pp. 175–95.

    CAS  Google Scholar 

  8. 8.

    W. Jaenicke, S. Leistikow, and A. Stadler:J. Electrochem. Soc., 1964, vol. 111, pp. 1031–37.

    Article  CAS  Google Scholar 

  9. 9.

    W. Jaenicke, S. Leistikow, A. Stadler, and L. Albert:Mem. Sci. Rev. Met., 1965, vol. 62, pp. 231–39.

    Google Scholar 

  10. 10.

    J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnston, and C. H. Li:Trans. TMS-AIME, 1959, vol. 215, pp. 420–24.

    CAS  Google Scholar 

  11. 11.

    C. A. Lombard: Air Force Mails. Lab TR-65-53,1965, 55pp.

  12. 12.

    R. F. Tylecote:J. Iron Steel Inst., 1960, vol. 196, pp. 135–41.

    CAS  Google Scholar 

  13. 13.

    C. A. Phalnikar and W. M. Baldwin, Jr.:Trans. ASTM, 1951, vol. 51, pp. 1038–59.

    Google Scholar 

  14. 14.

    J. P. Pemsler:J. Electrochem. Soc, 1958, vol. 105, pp. 315–22.

    Article  CAS  Google Scholar 

  15. 15.

    J. V. Cathcart, J. J. Campbell, and G. P. Smtih:J. Electrochem. Soc., 1958, vol. 105, pp. 442–46.

    Article  CAS  Google Scholar 

  16. 16.

    R. E. Pawel, J. V. Cathcart, and J. J. Campbell:AIME Symposium on Columbium Metallurgy, pp. 667–82, Interscience, New York 1961.

    Google Scholar 

  17. 17.

    R. E. Pawel, J. V. Cathcart, and J. J. Campbell:J. Electrochem. Soc., 1963, vol. 110, pp. 551–57.

    Article  CAS  Google Scholar 

  18. 18.

    P. Kofstad:High-Temperature Oxidation of Metals, pp. 147–227, John Wiley & Sons, New York, 1966.

    Google Scholar 

  19. 19.

    A. Dravnieks and H. J. McDonald:Trans. Electrochem. Soc., 1948, vol. 94, pp. 139–51.

    CAS  Google Scholar 

  20. 20.

    A. Preece and G. Lucas:J. Inst. Metals, 1952–53, vol. 81, pp. 219–27.

    CAS  Google Scholar 

  21. 21.

    B. Ilschner and H. Pfeiffer:Naturwissenschaften, 1953, vol. 40, pp. 603–04.

    Article  CAS  Google Scholar 

  22. 22.

    N. Birks and H. Rickert:J. Inst. Metals, 1962–63, vol. 91, pp. 308–11.

    Google Scholar 

  23. 23.

    B. M. Vasyutinskiy and G. N. Kartmazov:Phys. Met. Metallog., 1963, vol. 15, pp. 120–22.

    Google Scholar 

  24. 24.

    P. W. Bridgman:Studies in Large Plastic Flow and Failure, 1st ed., pp. 142–49, McGraw-Hill Book Co., New York, 1952.

    Google Scholar 

  25. 25.

    F. N. Rhines:AIME Trans., 1940, vol. 137, pp. 246–86.

    Google Scholar 

  26. 26.

    L. S. Darken:AIME Trans., 1942, vol. 150, pp. 157–71.

    Google Scholar 

  27. 27.

    D. A. Vermilyea:Acta Met., 1957, vol. 5, pp. 492–95.

    Article  CAS  Google Scholar 

  28. 28.

    C. Wagner and K. Grünewald:Z. physik. Chem., 1938, vol. 40B, pp. 455–75.

    Google Scholar 

  29. 29.

    W. J. Moore and J. K. Lee:Trans. Faraday Soc, 1952, vol. 48, pp. 916–20.

    Article  CAS  Google Scholar 

  30. 30.

    E. A. Gulbransen:Ann. N. Y. Acad. Sci., 1954, vol. 58, pp. 830–42.

    Article  CAS  Google Scholar 

  31. 31.

    R. Lindner and A. Akerstrom:Disc. Faraday Soc, 1957, no. 23, pp. 133–36.

  32. 32.

    J. P. Baur, R. W. Bartlett, J. N. Ong, Jr., and W. M. Fassell, Jr.:J. Electrochem. Soc., 1963, vol. 110, pp. 185–89.

    Article  CAS  Google Scholar 

  33. 33.

    F. J. Morin:Phys. Rev., 1954, vol. 93, pp. 1199–1204.

    Article  CAS  Google Scholar 

  34. 34.

    D. W. Juenker, R. A. Meussner, and C. E. Birchenall:Corrosion, 1958, vol. 14, pp. 39t-46t.

    CAS  Google Scholar 

  35. 35.

    D. H. Bangham:J. Sci. Inst., 1945, vol. 23, pp. 230–31.

    Article  Google Scholar 

  36. 36.

    U. R. Evans:Pitts. Intern. Conf. Surface Reactions, 1948, pp. 71-76.

  37. 37.

    U. M. Martius:Can. J. Phys., 1955, vol. 33, pp. 466–72.

    CAS  Google Scholar 

  38. 38.

    O. Kubaschewski and B. E. Hopkins:Oxidation of Metals and Alloys, 2nd ed., p. 54, Academic Press, New York, 1962.

    Google Scholar 

  39. 39.

    A. U. MacRae:Science, 1963, vol. 139, pp. 379–88.

    Article  CAS  Google Scholar 

  40. 40.

    A. U. Seybolt:Advan. Phys., 1963, vol. 12, pp. 1–43.

    Article  CAS  Google Scholar 

  41. 41.

    S. P. Mitoff:J. Chem. Phys., 1961, vol. 35, pp. 882–89.

    Article  CAS  Google Scholar 

  42. 42.

    G. E Becker and A. L. Day:Proc. Wash. Acad. Sci., 1905, vol. 7, pp. 283–88.

    CAS  Google Scholar 

  43. 43.

    C. H. Desch:J. Inst. Metals, 1914, vol. 11, pp. 57–106.

    Google Scholar 

  44. 44.

    S. Taber:Proc Nat. Acad. Sci., 1917, vol. 3, pp. 297–302.

    Article  CAS  Google Scholar 

  45. 45.

    H. C. Boydell:Econ. Geology, 1926, vol. 21, pp. 1–55.

    CAS  Article  Google Scholar 

  46. 46.

    J. A. Sartell, S. Bendel, T. L. Johnston, and C. H. Li:Trans. ASM, 1958, vol. 50, pp. 1047–62.

    Google Scholar 

  47. 47.

    J. L. Meijering and M. L. Verheijke:Acta Met., 1959, vol. 7, pp. 331–38.

    Article  CAS  Google Scholar 

  48. 48.

    Y. Iida:J. Amer. Ceram. Soc., 1958, vol. 41, pp. 397–406.

    Article  CAS  Google Scholar 

  49. 49.

    J. A. Sartell and C. H. Li:J. Inst. Metals, 1961–62, vol. 90, pp. 92–96.

    CAS  Google Scholar 

  50. 50.

    D. McLean:Grain Boundaries in Metals, pp. 258–95, Oxford University Press, London, 1957.

    Google Scholar 

  51. 51.

    A. van Hook:Crystallization: Theory and Practice, pp. 1–44, Reinhold Publ. Co., New York, 1961.

    Google Scholar 

  52. 52.

    O. Kubaschewski and O. von Goldbeck:Z. Metallk., 1948, vol. 39, pp. 158–60.

    CAS  Google Scholar 

  53. 53.

    R. F. Tylecote:Mem. Sci. Rev. Met., 1965, vol. 62, pp. 241–47.

    Google Scholar 

  54. 54.

    O. Kubaschewski and B. E. Hopkins:Oxidation of Metals and Alloys, 2nd ed., p. 37, Academic Press, Inc., New York, 1962.

    Google Scholar 

  55. 55.

    J. S. Wolf: NASA TN D-5266, June, 1969, 69 pp.

Download references

Author information

Affiliations

Authors

Additional information

This paper is based in part on a doctoral dissertation submitted to the Graduate School of the University of Florida by J. S. WOLF in partial fulfillment of the requirements for the degree of Doctor of Philosopy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rhines, F.N., Wolf, J.S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel. MT 1, 1701–1710 (1970). https://doi.org/10.1007/BF02642020

Download citation

Keywords

  • Metallurgical Transaction
  • Nickel Oxide
  • Metallurgical Transaction Volume
  • Oxygen Flux
  • Oxide Crystal