Skip to main content
Log in

Blood lactate behavior after glucose load in diabetes mellitus

  • Original Contributions
  • Published:
Acta diabetologia latina Aims and scope Submit manuscript

Summary

The aim of this study was to evaluate the relationships between blood lactate and plasma glucose, insulin (IRI) and C-peptide (IRCP) during the first hour of an oral glucose load (OGTT, 100 g). Twelve controls, sixteen non-insulin-dependent (NIDDM) and four insulin-dependent (IDDM) diabetic subjects were studied. A significant increase in blood lactate was observed at 15 min in normal subjects, whereas there was a delayed increase at 45 min in NIDDM subjects, in the presence of IRCP increments of 0.31 nmol/l. In order to have a minimum significant lactate increment, the threshold value of peripheral IRCP increment was about 0.30 nmol/l. In IDDM subjects, despite considerable hyperglycemia, blood lactate concentration remained unchanged throughout the test. In normal and NIDDM subjects there was a significant negative correlation between Δ lactate and Δ glucose (r=−0.89, p<0.001) and a significant positive correlation between Δ lactate and Δ IRCP (r=0.78, p<0.001). In conclusion, hyperglycemia itself and the lack of increase in insulin secretion do not affect blood lactate increase during OGTT; blood concentration of this metabolite depends mainly on an early insulin secretion apt to enhance tissue glucose uptake and to inhibit gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplin C. M., Hartog M., Goldie D. J., Alberti K. G. M. M., Binder C., Faber O. K.: Diurnal profiles of serum insulin, C-peptide and blood intermediary metabolites in insulin treated diabetics, their relationship to the control of diabetes and the role of endogenous insulin secretion — Quart. J. Med.190, 343–360, 1979.

    CAS  Google Scholar 

  2. Bergman R. N., Beir J. R., Hourigan P. M.: Intraportal glucose infusion matched to oral glucose absorption. Lack of evidence for ‘Gut Factor’ involvement in hepatic glucose storage — Diabetes31, 27–35, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Bratusch-Marrain P. R., Waldhäusl W. K., Gasić S., Korn A., Nowotny P.: Oral glucose tolerance test: effect of different glucose loads on splanchnic carbohydrate and substrate metabolism in healthy man — Metabolism29, 289–295, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Chiasson J. L., Atkinson R. L., Cherrington A. D., Keller U., Sinclair-Smith B. C., Lacy W. W., Liljenquist J. E.: Effects of insulin at two dose levels on gluconeogenesis from alanine in fasting man — Metabolism29, 810–821, 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Chiasson J. L., Liljenquist J. E., Finger F. E., Lacy W. W.: Differential sensitivity of glycogenolysis and gluconeogenesis to insulin infusions in dogs — Diabetes25, 283–291, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Davidson M. B.: Autoregulation by glucose of hepatic glucose balance: permissive effect of insulin — Metabolism30, 279–284, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. De Fronzo R. A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J. P.: The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization — Diabetes30, 1000–1007, 1981.

    Google Scholar 

  8. Doar J. W. H., Cramp D. G., Maw D. S. J., Seed M., Wynn V.: Blood pyruvate and lactate levels during oral and intravenous glucose tolerance test in diabetes mellitus — Clin. Sci.39, 259–269, 1970.

    PubMed  CAS  Google Scholar 

  9. Felig P., Wahrén J.: Influence of endogenous insulin secretion on splanchnic glucose and aminoacid metabolism in man — J. clin. Invest.50, 1702–1711, 1971.

    PubMed  CAS  Google Scholar 

  10. Felig P., Wahrén J., Hendler R.: Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man — Diabetes24, 468–475, 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Hohorst H. J.: L-(+) lactate. In:Bergmeyer H. V. (Ed.): Methods of enzymatic analysis. Academic Press, New York-London, 1974.

    Google Scholar 

  12. Horwitz D. L., Starr J. I., Mako M. E., Blackard W. G., Rubenstein A. H.: Proinsulin, insulin and C-peptide concentration in human portal and peripheral blood — J. clin. Invest.55, 1278–1283, 1975.

    PubMed  CAS  Google Scholar 

  13. Katz J., McGarry J. D.: The glucose paradox. Is glucose a substrate for liver metabolism? — J. clin. Invest.74, 1901–1909, 1984.

    PubMed  CAS  Google Scholar 

  14. Jackson R. A., Moloney M., Lowy C., Wright A. D., Hartog M., Pilkington T. R. E., Fraser T. R.: Differences between metabolic responses to fasting in obese diabetic and obese nondiabetic subjects — Diabetes20, 214–227, 1971.

    PubMed  CAS  Google Scholar 

  15. Madsbad S., Faber O. K., Binder C., Alberti K. G. M. M., Lloyd B.: Diurnal profiles of intermediary metabolites in insulin-dependent diabetes and their relationship to different degrees of residual B-cell function — Acta diabetol. lat.18, 115–121, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Miller T. B. Jr.: Effects of diabetes on glucose regulation of enzymes involved in hepatic glycogen metabolism. — Amer. J. Physiol.234, E13-E19, 1978.

    PubMed  CAS  Google Scholar 

  17. Miller T. B. Jr., Hazen R., Larner J.: An absolute requirement for insulin in the control of hepatic glycogenesis by glucose — Biochem. biophys. Res. Commun.53, 466–474, 1973.

    Article  PubMed  CAS  Google Scholar 

  18. National Diabetes Data Group: Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance — Diabetes28, 1039–1057, 1979.

    Google Scholar 

  19. Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F. Jr.: Amino acid balance across tissues of the forearm in postabsorptive man. Effect of insulin at two dose levels — J. clin. Invest.48, 2273–2282, 1969.

    PubMed  CAS  Google Scholar 

  20. Rabinowitz D., Liljenquist J. E.: Glucose metabolism in intact man: the responsiveness of splanchnic and peripheral tissues to insulin — Metabolism27, (Suppl. 2), 1832–1838, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Rabinowitz D., Zierler K. L.: Forearm metablism in obesity and its response to intraarterial insulin. Characterization of insulin resistance and evidence for adaptive hyperinsulinism — J. clin. Invest.41, 2173–2181, 1962.

    PubMed  CAS  Google Scholar 

  22. Radziuk J.: Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans — Fed. Proc.41, 110–116, 1982.

    PubMed  CAS  Google Scholar 

  23. Radziuk J., Inculet R.: The effects of ingested and intravenous glucose on forearm uptake of glucose and glucogenic substrate in normal man — Diabetes32, 977–981, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Rizza R., Mandarino L., Gerich J.: Dose response characteristics for effects of insulin on production and utilization of glucose in man — Amer. J. Physiol.240, E630–639, 1981.

    PubMed  CAS  Google Scholar 

  25. Saccà L., Cicala M., Trimarco B., Ungaro B., Vigorito C.: Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man — J. clin. Invest.70, 117–126, 1982.

    PubMed  Google Scholar 

  26. Saccà L., Hendler R., Sherwin R. S.: Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones — J. clin. Endocrinol. Metabol.47, 1160–1163, 1978.

    Google Scholar 

  27. Saccà L., Vitale D., Cicala M., Trimarco B., Ungaro B.: The glucoregulatory response to intravenous glucose infusion in normal man: roles of insulin and glucose — Metabolism30, 457–461, 1981.

    Article  PubMed  Google Scholar 

  28. Shulman G. I., Lacy W. W., Liljenquist J. E., Keller U., Williams P. E., Cherrington A. D.: Effect of glucose independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog — J. clin. Invest.65, 496–505, 1980.

    PubMed  CAS  Google Scholar 

  29. Trevisan R., Nosadini R., Avogaro A., Lippe G., Duner E., Fioretto P., Deana R., Tessari P., Tiengo A., Velussi M., Cernigoi A., Del Prato S., Crepaldi G.: Type I diabetes is characterized by insulin resistance not only with regard to glucose, but also to lipid and amino acid metabolism — J. clin. Endocrinol. Metabol.62, 1155–1162, 1986.

    Article  CAS  Google Scholar 

  30. Waldhäusl W. K., Bratusch-Marrain P., Gasić S., Korn A., Nowotny P.: Insulin production rate, hepatic insulin retention and splanchnic carbohydrate metabolism after oral glucose ingestion in hyperinsulinaemic type 2 (non insulin-dependent) diabetes mellitus — Diabetologia23, 6–15, 1982.

    Article  PubMed  Google Scholar 

  31. Wahrén J., Felig P., Cerasi E., Luft R.: Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus — J. clin. Invest.51, 1870–1878, 1972.

    Article  PubMed  Google Scholar 

  32. Zierler K. L., Rabinowitz D.: Effect of very small concentrations of insulin on foream metabolism. Persistence of its action on potassium and free fatty acids without its effects on glucose — J. clin. Invest.43, 95–962, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prando, R., Cheli, V., Buzzo, P. et al. Blood lactate behavior after glucose load in diabetes mellitus. Acta diabet. lat 25, 247–256 (1988). https://doi.org/10.1007/BF02624820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624820

Key-words

Navigation