Skip to main content

Comparative C19-radiosteroid metabolism by MA 160 and HeLa cell lines


Since the designation of the human MA 160 line as prostatic epithelial cells has been questioned and the possibility of HeLa cross contamination raised, this comparative study of C19-radiosteroid transformation in MA 160 and HeLa monolayer cultures was done to determine whether these cells possess the distinguishing features of reductive and oxidative androgen metabolism expected in male and female genital organs, respectively. We compared the radiometabolite patterns produced by incubating [14C]testosterone (300nM) and [3H]testosterone (3nm) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) with cultures of prostatic MA 160 and HeLa Parent, TCRC-1, TCRC-2 and ATC 229 cells. C19-Radiosteroid metabolite patterns from MA 160 cell incubations also were compared with patterns generated by MA 196 fibroblasts from abdomnal skin of the same donor. MA 160 cells metabolized radiotestosterone predominantly to 5α-dihydrotestosterone, 5α-androstane-3α,17β-diol and 5α-androstane-3β,17β-diol. The diol epimers were the principal metabolites of 5α-dihydrotestosterone radiosubstrate. In contrast, radiotestosterone metabolism by MA 196 and HeLa Parent, TCRC-1 and TCRC-2 cells was overwhelmingly to the 17-oxosteroids 4-androstene-3,17-dione and androsterone. Another pathway was operative in HeLa 229 and, to a minor extent, in TCRC-1, which converted radiotestosterone to 4-androstene-3α,17β-diol and 5α-androstane-3α,17β-dol, with little formation of 5α-dihydrotestosterone. MA 160 cells thus metabolize radiotestosterone preponderantly to 5α-reduced 17β-hydroxysteroids as expected for prostatic epithelial cells, whereas HeLa cells show heterogeneity in metabolizing the labeled hormone by the alternative 17-oxosteroid and Δ4 pathways.

This is a preview of subscription content, access via your institution.


  1. 1.

    Frale, E. E., S. Ecker, and M. M. Vincent 1970. Spontaneousin vitro neoplastic transformation of adult human prostatic epithelium. Science 170: 540–542.

    Article  Google Scholar 

  2. 2.

    Richman, A. V., M. M. Vincent, E. C. Martino, and N. M. Tauraso 1972. Heterotransplantation of human prostatic adenoma cells, MA 160, into nonimmunosuppressed hamsters. Cancer Res. 32: 2186–2189.

    PubMed  CAS  Google Scholar 

  3. 3.

    Peterson, W. D., Jr., W. F. Simpson, P. S. Ecklund, and C. S. Stullberg 1973. Diploid and heteroploid human cell lines surveyed for Y chromosome fluorescence. Nature [New Biol.] 242: 22–24.

    Google Scholar 

  4. 4.

    Baulieu, E.-E., and P. Mauvais-Jarvis 1964. Studies on testosterone metabolism. I. Conversion of testosterone-17α-3H to 5α- and 5β-androstane-3α,17β-diol-17α-3H: a new “17β-hydroxyl pathway”. J. Biol. Chem. 239: 1569–1577.

    PubMed  CAS  Google Scholar 

  5. 5.

    Ofner, P., R. L. Vena, N. J. Barowsky, and A. H. Tashjian, Jr. 1973. C19-Steroid metabolism by the MA 160 line of human prostatic cells (Abstr.). In Vitro 8: 436.

    Google Scholar 

  6. 6.

    Nelson-Rees, W. A., R. R. Flandermeyer, and P. K. Hawthorne 1974. Banded marker chromosomes as indicators in intraspecies cellular contamination. Science 184: 1093–1096.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Nelson-Rees, W. A., and R. R Flandermeyer. 1976. HeLa cultures defined. Science 191: 96–98.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Rustigian, R., J. P. W. Kelley, D. A. Ellis, L. A. Clark, N. R. Inglis, and W. H. Fishman 1974. Regan type of alkaline phosphatase in a human heteroploid cell line. Cancer Res. 34: 1908–1915.

    PubMed  CAS  Google Scholar 

  9. 9.

    Singer, R. M., and W. H. Fishman 1974. Characterization of two Hela sublines: TCRC-1 produces Regan isoenzyme and TCRC-2 non-Regan isoenzyme. J. Cell Biol. 60: 777–780.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Morfin, R. F., F. Berthou, H. H. Floch, R. L. Vena, and P. Ofner 1973. Evaluation of the specific activity of biochemically-prepared carriercrystallized androgen radiometabolites by a new procedure. J. Steroid Biochem. 4: 381–391.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Lowry, O. H., N. F. Rosebrough, A. L. Farr, and R. J. Randall 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  12. 12.

    Ham, R. G. 1963. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29: 515–526.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Morfin, R. F., M. A. Aliapoulios, J. Chamberlain, and P. Ofner 1970. Metabolism of testosterone-4-14C by the canine prostate and urinary bladderin vivo. Endocrinology 87: 394–405.

    PubMed  CAS  Google Scholar 

  14. 14.

    Ward, M. G., and L. L. Engel. 1966. Reversibility of steroid Δ-isomerase. III. The soluble enzyme ofpseudomonas testosteroni. J. Biol. Chem. 241: 3154–3157.

    PubMed  CAS  Google Scholar 

  15. 15.

    Chamberlain, J., N. Jagarinec, and P. Ofner 1966. Catabolism of (4-14C)testosterone by subcellular fractions of human prostate. J. Biochem. 99: 610–616.

    CAS  Google Scholar 

  16. 16.

    Ofner, P., I. Leav, and L. F. Cavazos 1974. C19-Steroid metabolism in male accessory sex glands. Correlation of changes in fine structure and radiometabolite patterns in the prostate of the androgen-deprived dog. In: D. Brandes (Ed.),Male Accessory Sex Organs. Structure and Function in Mammals. Academic Press, New York, pp. 267–305.

    Google Scholar 

  17. 17.

    Ofner, P., R. L. Vena, and R. F. Morfin 1974. Acetylation and hydroxylation of 5α-androstane-3β,17β-diol by prostate and epididymis. Steroids 24: 261–279.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Leav, I., L. F. Cavazos, and P. Ofner 1974. Fine structure and C19-steroid metabolism of spontaneous adenocarcinoma of the canine prostate. J. Natl. Cancer Inst. 52: 789–804.

    PubMed  CAS  Google Scholar 

  19. 19.

    Jenkins, J. S., and V. M. McCaffery 1974. Effect of oestradiol-17β and progesterone on the metabolism of testosterone by human prostatic tissue. J. Endocrinol. 63: 517–526.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Morfin, R. F., I. Leav, J.-F. Charles, L. F. Cavazos, P. Ofner, and H. H. Floch 1977. Correlative study of the morphology and C19-steroid metabolism of benign and cancerous human prostatic tissue. Cancer 39: 1517–1534.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mulay, S., R. Finkelberg, L. Pinsky, and S. Solomon. 1972. Metabolism of 4-14C-testosterone by serially subcultured human skin fibroblasts. J. Clin. Endocrinol. Metab. 34: 133–143.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Smith, O. W., P. Ofner, and R. L. Vena 1974.In vitro conversion of testosterone-4-14C to androgens of the 5α-androstane series by a normal human ovary. Steroids 24: 311–315.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Voigt, W., E. P. Fernandez, and S. L. Hsia 1970. Transformation of testosterone into 17β-hydroxy-5α-androstan-3-one by microsomal preparations of human skin. J. Biol. Chem. 245: 5594–5599.

    PubMed  CAS  Google Scholar 

  24. 24.

    Robertson, A. L., and A. Fenton. Personal communication.

  25. 25.

    Vincent, M. M. 1976. In: J. T. Grayhack, J. D. Wilson, and M. J. Scherbenske (Eds.),Benign Prostatic Hyperplasia. Proceedings of the Workshop at NIH, February 20–21, 1975, Bethesda, Md., p. 244.

  26. 26.

    Fraley, E. E., and D. F. Paulson 1974. Experimental carcinogenesis of the prostate. In: D. Brandes (Ed.),Male Accessory Sex Organs. Structure and Function in Mammals. Academic Press, New York, pp. 383–396.

    Google Scholar 

  27. 27.

    Fogh, J., N. B. Holmgren, and P. P. Ludovici. 1971. A review of cell culture contaminations. In Vitro 7: 26–41.

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Ofner.

Additional information

This work was supported by Public Health Service Research Grants CA 13417 and CA 12924 from the National Cancer Institute, AM 11011 from the National Institute of Arthritis, Metabolism and Digestive Diseases, and by appropriations of the Commonwealth of Massachusetts, Item No. 4532-9003-01.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ofner, P., Vena, R.L., Barowsky, N.J. et al. Comparative C19-radiosteroid metabolism by MA 160 and HeLa cell lines. In Vitro 13, 378–388 (1977).

Download citation

Key words

  • MA 160 cells
  • HeLa cell lines
  • monolayer culture
  • radiotestosterone metabolism
  • cross contamination