Mineralogical and engineering properties of problematic expansive clayey beds causing landslides

  • Al-Homoud A. S. 
  • Khoury H. 
  • Al-Omari Y. A. 


Many landslides have occurred at slope cuts-embankments adjacent to the Amman-Na'ur-Dead Sea and Irbid-Jerash-Amman highways in Jordan, especially during the last four years that were characterized by exceptional raifall during winter. Clayey beds found in the foundations of the failing areas were responsible for the occurrence of these landslides.

This paper presents the results of research evaluating the chemical and engineering properties of the clayey beds in the Kurnub Sandstone Unit and the Ajlun Group of the Upper Cretaceous at twenty four landslide locations along the Amman-Na'ur-Dead Sea and Irbid-Jerash Amman highways. The clay minerals associated with the clayey beds were characterized and correlated with their engineering properties. The relationship between clay minerals, chemical and engineering properties of clayey beds and the foundation failures were also identified.

The study included field visits to twenty four landslides sites to identify the problem, collect samples from the foundation along the slip surface, draw profiles and columnar sections.

Chemical analysis was carried out for the whole rock sample and for clay samples. Tests were also conducted to evaluate the physical and engineering properties of the samples.

Results showed that most of the landslides occurred within the upper part of the Kurnub Sandstone and the Na'ur formation.

Quartz, calcite and dolomite are the non-clay minerals and Mixed-Layer (I/S) and kaolinite are the clay minerals identified for samples obtained from the studied areas.

The jointed rocks allowed water to penetrate through the joints and reach the clayey beds. The ability of the mixed-layer (I/S) clays to expand in the presence of water resulted in the reduction of shear strength during rainfall, thus initiating the sliding process. The double-layer effect was noticed in samples with higher (I/S) content which gave the highest swelling potential, highest Liquid and Plastic Limits, and the lowest angle of friction.


Dolomite Clay Mineral Kaolinite Liquid Limit Internal Friction Angle 

Caractéristiques minéralogiques et géotechniques de lits argileux expansifs à l'origine de glissements de terrain


De nombreux glissements de tarrain se sont produits dans des déblais des autoroutes Amman-Na'ur-Mer Morte et Irbid-Jerash-amman en Jordanie, en particulier au cours des deux dernières années, qui ont été caractérisées par des chutes de pluie exceptionnelles en hiver. Les lits argileux présents dans les zones atteintes sont à l'origine de ces glissements. Le présent article présente les résultats des recherches sur les propriétés chimiques et géotechniques de ces lits argileux, à partir des prélèvements effectués sur 24 glissements. Les relations entre la nature et la quantité de minéraux argileux et leur comportement en place dans les glissements sont également étudiés.

L'étude inclut des visites de terrain sur les 24 sites, la collecte d'échantillons le long des surfaces de glissement, des profils et des coupes sériées.

Les analyses chimiques ont proté sur les échantillons globaux et sur les argiles.

Le quartz, la calcite et la dolomite sont les minéraux non argileux les plus répandus et les interstratifiés et la kaolinite sont les minéraux argileux rencontrés dans les secteurs étudiés.

Les roches fissurées ont permis à l'eau de pénétrer jusqu'aux lits argileux. Les niveaux à minéraux argileux interstratifiés ont gonflé réduisant la résistance au cisaillement durant les pluies, déclenchant ainsi le processus de glissement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AL-HOMOUD A.S., TAL, A. and HUSEIN (Malkwai) A.I., 1994a: “Instability and Stabilization of an Embankment on the Irbid-Amman Highway in Jordan”,Canadian Geotechnical Journal, vol 31, pp. 1015–1021.CrossRefGoogle Scholar
  2. AL-HOMOUD A.S., SAKET S. and HUSEIN (Malkawi) A.I., 1994b: “Investigation of Failure of Highway Embankment Founded on Colluvium and Suggested Stabilization Measures for Reconstruction”,Int. Journal of Engineering Geology, vol. 38, pp. 95–116.CrossRefGoogle Scholar
  3. AL-HOMOUD A.S., HUSEIN (Malkawi) A.I., BASMA A. and TAL A., 1995a: “Geotechnical Investigation of Embankment Foundation Instability and Landslide at Station 40+700 on Irbid Amman Highway, Jordan”, Africa Geoscience Review, Rock View Int., Vol. 2, No. 2, pp. 247–265.Google Scholar
  4. AL-HOMOUD A.S., TAQIEDDIN S.A., SALAMEH E., TAL A.B., SAKET S. and SADOON M.I., 1995b: “A Critical Overview of the Geotechnical Studies at Na'ur Landslide No. 4 in Jordan: Causes and Measures”,Int. Journal of Engineering Geology, Vol. 40(1/2), pp. 103–136.CrossRefGoogle Scholar
  5. AL-HOMOUD A.S., TAQIEDDIN S. and SAKET S., 1975c: “Investigation on the Geological and Geotechnical Factors Leading to a Major Slope Failure at a Selected Site on a Jordanian Highway”,Natural Hazards Journal, Kluwer Academic Publishers, Vol 12, Dec. pp. 203–224.Google Scholar
  6. AL-HOMOUD A.S., TAL A. and TAQIEDDIN S.A., 1997: “A Comparative Study of Slope Stability Methods and Mitigative Design of a Highway Embankment Landslide with a Potential for Deep Seated Sliding”, a Paper Accepted for Publication. Int. Journal of Engineering Geology, to Appear April.Google Scholar
  7. American Standard for Testing and Materials (ASTM), 1983, “Annual Book of ASTM Standards, Section 4, Construction”, vol. 04.08, Natural Building Stones, Soil and Rock, American Society for Testing and Materials, USA.Google Scholar
  8. BENDER F., 1974: “Geology of Jordan”, Supplementary Edition in English with Minor Revision, Gebr. Borntraegger, Berlin, 196 pp.Google Scholar
  9. Dames and Moore International, 1993: “Landslides on Irbid-Jerash-Amman Highway”, a Report Submitted to Ministry of Public Works and Housing, Amman, Jordan, April.Google Scholar
  10. DRISCOLL R., 1984: “The Effects of Clay Volume Change on Low-Rising Buildings”, Surrey University, Blackie Group, Glasgow.Google Scholar
  11. GILLOTT J.E., 1986: “Some Clay Related Problems in Engineering Geology in North America”, Clay Minerals, vol. 21, pp. 261–278.CrossRefGoogle Scholar
  12. HAWKINS A.B., LAWRENCE M.S. and PRIVETT K.D., 1986: “Clay Mineralogy and Plasticity of the Fuller Earth Formation Bath”, U.K., Clay Minerals, vol. 21, pp. 293–310.CrossRefGoogle Scholar
  13. HORN H.M. and DEERE D.V. 1962: “Frictional Characteristics of Minerals”, Geotechnique, vol. 21, No. 4, pp. 319–335.CrossRefGoogle Scholar
  14. JULIO C.M., LUIS A.S. and LUIS M.B., 1992: “A Fortran Program for the Calculation of Normative Composition of Clay Minerals and Peletic Rocks”, Computer and Geoscience, vol. 18, No. 1, pp. 47–61.CrossRefGoogle Scholar
  15. MASRI M.R., 1963: “Report on the Geology of Amman-Zarqa Area”, Central Water Authority, Amman, 47 p.Google Scholar
  16. MESRI G., ROKHSAR A. and BOHOR B.F., 1975: “Composition and Compressibility of Typical Samples of Mexico City Clay”, Geotechnique, vol. 25, No. 3, pp. 527–554.CrossRefGoogle Scholar
  17. McDONALD M., and Partners, In Cooperation with Hunting Geological Survey Ltd., 1965 “East Bank Water Resources”, Central Water Authority, Amman, Jordan.Google Scholar
  18. MITCHELL J.K., 1976: “Fundamentals of Soil Behaviour” John Wiley, New York, USA.Google Scholar
  19. MOHAMMED A., RABBA S. and OSSAMA M. 1981: “Role of Mineralogical Composition in the Activity of Expansive Soils”, Journal of the Egyptian Society of Engineering, vol. 19, No. 1, pp. 28–33.Google Scholar
  20. OLPHEN H.V. and FRIPIAT J.J. 1979:Data Handbook for Clay Minerals and other Non-Metalic Minerals, Pergamon Press Inc., New York.Google Scholar
  21. OLSON E. and MESRI G. 1970: “Mechanisms Controlling Compressibility of Clays, Journal of the Soil Mechanics and Foundation Division,” ASCE, vol. 96, No. SM6, pp. 1863–1878.Google Scholar
  22. OLSON E., 1974: “Shearing Strength of Kaolinite, Illite and Montmorillonite”, Journal of the Geotechnical Engineering Division, vol. 100, No. GT11, pp. 1214–1229.Google Scholar
  23. PARKER D.H. 1970: “The Hydrogeology of the Cenozoic Aquifers of the Western Highlands and Plateau of East Jordan (4 Vols.)”. UNDP/FAO 212 No. 2, Rome, 424 p.Google Scholar
  24. Parsons Brinckerhoff International, 1987: “Amman-Na'ur-Dead Sea Landslide”, Report Prepared for Messrs Jouzy and Partners, Submitted to MPWH, Amman, Jordan.Google Scholar
  25. QUENNELL A.M. 1951: “Geology of Mineral Resources of Trans Jordan”, Colonial Geology and Mineral Resources, London.Google Scholar
  26. RAMANA K.V., 1993, “Humid Tropical Expansive Soils of Trinidad: Their Geotechnical Properties and Areal Distribution”, Engineering Geology, vol. 34, pp. 27–44.CrossRefGoogle Scholar
  27. REYNOLDS R.C. and HOWER J., 1970: “The Nature of Interlayering in Mixed-Layer Illite-Montmorillonite”, J. of Clays and Clay Minerals, vol. 18, pp. 25–36.CrossRefGoogle Scholar
  28. SHTEWI H., 1994: “Rythmic Sedimentation of the Marl-Limestone in the Upper Cretaceous of North Jordan”, M. Sc. Thesis Jordan University, Amman, Jordan.Google Scholar
  29. SRIDHARAN A. and VENKATAPPA RAO G., 1973: “Mechanisms Controlling Volume Change of Saturated Clays and the Role of the Effective Stress Concept”, Geotechnique, vol. 23, pp. 359–382.CrossRefGoogle Scholar
  30. SRIDHARAN A., RAO S.M. and MURTHY N.S., 1988: “Liquid Limit of Kaolinitic Soils”, Geotechnique, vol. 38, pp. 191–198.CrossRefGoogle Scholar
  31. TAYLOR R.K. and SMITH T.J., 1986: “The Engineering Geology of Clay Minerals: Swelling, Shrinkage and Mudrock Breakdown”, Clay Minerals, vol. 21, pp. 235–260.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1980

Authors and Affiliations

  • Al-Homoud A. S. 
    • 1
  • Khoury H. 
    • 2
  • Al-Omari Y. A. 
    • 2
  1. 1.Jordan University of Science and TechnologyIrbidJordan
  2. 2.Jordan UniversityAmmanJordan

Personalised recommendations