Quantification of surface faulting potential in a low to moderate active region: An example from the Southern Rhinegraben area

  • Simon Loew
  • Jean-Pierre Jenni
  • Bernard Blanc


In low to moderate tectonically active areas, such as intracontinental regions with deep reaching zones of crustal weakness, direct observations of surface faulting offsets are very scarce and the seismic record is often incomplete and small. This complicates the study of a possible surface faulting hazard and requires new analysis concepts. In the case study presented in this paper, the seismic hazard potential of an already defined nuclear power plant site located in such a moderate active region had to be reassessed, and the possible effects of surface faulting had to be quantified.


Slip Rate Investigation Area Critical Fault Rupture Length Border Fault 

Quantification de l'activité potentielle de failles de surface dans une région à activité tectonique faible ou moyenne: Exemple d'une zone située dans le sud du fossé rhénan


Dans les secteurs à activité tectonique faible ou moyenne, telles que les régions intracontinentales avec des zones de faiblesse de la croûte très profonde, des observations directes des fracturations de surface sont très dispersées et les données sur la seismicité incomplètes. Ceci complique l'étude d'un éventuel risque dû à la fracturation de surface et nécessite d'utiliser de nouveaux concepts d'analyse. Dans l'exemple présenté dans cet article, le risque sismique lié à un site de centrale nucléaire déjà défini a dû être réexaminé et les effets éventuels d'une fracturation de surface ont été quantifiés.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. AHORNER L., 1975: Present-day stress field and seismotectonic block movements along major fault zones in Central Europe: Tectonophysics 29, 233–249.CrossRefGoogle Scholar
  2. AMBRASEYS N.N., and TCHALENKO J.S., 1972: Seismotectonic aspects of the Gediz, Turkey, earthquake of March 1970: Geophys. J.R. astr. Soc. 30, 229–252.CrossRefGoogle Scholar
  3. BONILLA M.G., 1970: Surface faulting and related effects, in: Wiegel (ed): Earthquake Engineering, Prentice Hall Inc. Englewood Cliffs.Google Scholar
  4. BONILLA M.G., 1979: Historic surface faulting—map patterns, relation to subsurface faulting, and relation to pre-existing faults: Proceedings of conference VIII, Analysis of actual fault zones in bedrock.Google Scholar
  5. BONILLA M.G., 1982: Evaluation of potential surface faulting and other tectonic deformation: N.U.R.E.G./C.R.-2991, U.S. Nuclear Regulatory Commission, Washington, N.R.C.F.I.N. B5535.CrossRefGoogle Scholar
  6. BONILLA M.G., MARK R.K., and LIENKÄMPER J.J., 1984: Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement: Bull. Seism. Soc. Amer. 74/6, 2379–2411.Google Scholar
  7. BONJER K.P., 1985: The seismicity of the Rhinegraben rift system— source parameters, propagation- and site effects-, in: Melchior, P., (ed), Seismic Activity in Western Europe: Reidel Publishing Company, 71–83.Google Scholar
  8. BONJER K.P. and APOPEI I., 1986: The southernmost Rhinegraben and Dinkelberg area: Sonderforschungsbereich 108 der Universität Karlsruhe. Band 1984–1986, 99–113.Google Scholar
  9. BONJER K.P., GELBKE C., GILG ROULAND D., MAYER-ROSA D., and MASSINON B., 1984: Seismicity and dynamics of the Upper Rhinegraben: Journal of GEOPHYSICS 55, 1–12.Google Scholar
  10. BROWN L.D., and REILINGER R.E., 1986: Epeirogenic and intraplate movements, in: Geophysics Study Committee, Active Tectonics, National Academy Press, Washington D.C.Google Scholar
  11. BRUNE J., 1968: Seismic moment, seismicity and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784.CrossRefGoogle Scholar
  12. GARDNER T.W., JORGENSEN D.W., SHUMAN C., and LEMIEUX C.R., 1987: Geomorphic and tectonic process rates: Effects of measured time interval: Geology, v. 15, 259–261.CrossRefGoogle Scholar
  13. GUTENBERG B., and RICHTER C.F., 1954: Seismicity of the earth and associated phenomena: Hafner publishing C., New York.Google Scholar
  14. HALDIMANN P., NAEF H., and SCHMASSMANN H., 1984: Fluviatile Erosions- und Akumulationsformen als Indizien jungplei stozäner und holozäner Bewegungen in der Nordschweiz und angrenzenden Gebieten: Ber. N.T.B. 84-16. Nagra, Baden.Google Scholar
  15. International Atomic Energy Agency I.A.E.A., 1979: Earthquakes and Associated Topics in Relation to Nuclear Power Plant Siting, A Safety Guide: I.A.E.A. No. 50-SG-S1, Vienna.Google Scholar
  16. ILLIES J.H., 1975: Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben rift system: Tectonophysics 29, 251–264.CrossRefGoogle Scholar
  17. ILLIES J.H., and GREINER G., 1979: Holocene movements and state of stress in the Rhinegraben rift system: Tectonophysics 51, 349–359.CrossRefGoogle Scholar
  18. KOBAYASHI Y., 1976: Hazards from surface faulting in Earthquakes: Bull. Disaster Prevention Res. Inst. (Kyoto, Japan) 26/4, 213–240.Google Scholar
  19. LAUBSCHER H.P., 1987: Die tektonische Entwicklung der Nordschweiz: Eclogae geol. helv. 80/2, 287–303.Google Scholar
  20. MARUYAMA T., 1964: Statical Elastic Dislocations in an Infinite and Semi-Infinite Medium: Bull. of the Earthq. Res. Institut Tokyo 42, 289–368.Google Scholar
  21. Nuclear Regulatory Commission N.R.C., 1980: Reactor Site Criteria, including Appendix A: Code of Federal Regulations, Title 10, Part 100, Revised as of January 1, 1980.Google Scholar
  22. PURCARU G., and BERCKHEIMER H., 1981: Quantitative relations of seismic source parameter and a classification of earthquakes: Tectonophysics 84, 57–128.CrossRefGoogle Scholar
  23. RIBEIRO A., 1986: A stochastic model to estimate maximum expectable magnitude of earthquakes from fault dimensions and slip rate: Terra Cognita 6/4, 611–616.Google Scholar
  24. SAVAGE J.C., 1980: Dislocations in seismology, in: Nabarro F.R.N. (ed), Dislocations in solid: North-Holland Publ. Co.Google Scholar
  25. SAVAGE J.C., and HASTIE L.M., 1966: Surface deformation associated with dip-slip faulting: J. Geophys. Res. 71/20, 4897–4904.CrossRefGoogle Scholar
  26. SLEMMONS D.B., and DEPOLO C.M., 1986: Evaluation of active faulting and associated hazards, in: Geophysics Study Committee: Active Tectonics; National Academy Press, Washington D.C.Google Scholar
  27. STEKETEE J.A., 1958: On Voltera's dislocations in a semi-infinite elastic medium: Can. J. Phys. 36, 192–205.CrossRefGoogle Scholar
  28. STEKETEE J.A., 1958: Some geophysical applications of the elasticity theory of dislocations: Can. J. Phys. 36, 1168–1198.CrossRefGoogle Scholar
  29. WALLACE R.E., 1986: Overview and Recommendations, in: Geophysics Study Committee: Active Tectonics, National Academy Press, Washington D.C.Google Scholar
  30. WEICHERT D.M., 1980: Estimation of the earthquake recurrence parameters for unequal observations periods for different magnitudes: Bull. Seismol. Soc. Amer. 70/4, 1337–1346.Google Scholar
  31. WYSS M., 1979: Estimating maximum expectable magnitude of earthquakes from fault dimensions: Geology 7, 336–340.CrossRefGoogle Scholar

Copyright information

© International Association of Engineering Geology 1989

Authors and Affiliations

  • Simon Loew
    • 1
  • Jean-Pierre Jenni
    • 2
  • Bernard Blanc
    • 1
  1. 1.Colenco Inc.BadenSwitzerland
  2. 2.Holinger Inc.AarauSwitzerland

Personalised recommendations