Skip to main content
Log in

Quantification of surface faulting potential in a low to moderate active region: An example from the Southern Rhinegraben area

Quantification de l'activité potentielle de failles de surface dans une région à activité tectonique faible ou moyenne: Exemple d'une zone située dans le sud du fossé rhénan

  • Published:
Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur Aims and scope Submit manuscript

Abstract

In low to moderate tectonically active areas, such as intracontinental regions with deep reaching zones of crustal weakness, direct observations of surface faulting offsets are very scarce and the seismic record is often incomplete and small. This complicates the study of a possible surface faulting hazard and requires new analysis concepts. In the case study presented in this paper, the seismic hazard potential of an already defined nuclear power plant site located in such a moderate active region had to be reassessed, and the possible effects of surface faulting had to be quantified.

Résumé

Dans les secteurs à activité tectonique faible ou moyenne, telles que les régions intracontinentales avec des zones de faiblesse de la croûte très profonde, des observations directes des fracturations de surface sont très dispersées et les données sur la seismicité incomplètes. Ceci complique l'étude d'un éventuel risque dû à la fracturation de surface et nécessite d'utiliser de nouveaux concepts d'analyse. Dans l'exemple présenté dans cet article, le risque sismique lié à un site de centrale nucléaire déjà défini a dû être réexaminé et les effets éventuels d'une fracturation de surface ont été quantifiés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • AHORNER L., 1975: Present-day stress field and seismotectonic block movements along major fault zones in Central Europe: Tectonophysics 29, 233–249.

    Article  Google Scholar 

  • AMBRASEYS N.N., and TCHALENKO J.S., 1972: Seismotectonic aspects of the Gediz, Turkey, earthquake of March 1970: Geophys. J.R. astr. Soc. 30, 229–252.

    Article  Google Scholar 

  • BONILLA M.G., 1970: Surface faulting and related effects, in: Wiegel (ed): Earthquake Engineering, Prentice Hall Inc. Englewood Cliffs.

    Google Scholar 

  • BONILLA M.G., 1979: Historic surface faulting—map patterns, relation to subsurface faulting, and relation to pre-existing faults: Proceedings of conference VIII, Analysis of actual fault zones in bedrock.

  • BONILLA M.G., 1982: Evaluation of potential surface faulting and other tectonic deformation: N.U.R.E.G./C.R.-2991, U.S. Nuclear Regulatory Commission, Washington, N.R.C.F.I.N. B5535.

    Book  Google Scholar 

  • BONILLA M.G., MARK R.K., and LIENKÄMPER J.J., 1984: Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement: Bull. Seism. Soc. Amer. 74/6, 2379–2411.

    Google Scholar 

  • BONJER K.P., 1985: The seismicity of the Rhinegraben rift system— source parameters, propagation- and site effects-, in: Melchior, P., (ed), Seismic Activity in Western Europe: Reidel Publishing Company, 71–83.

  • BONJER K.P. and APOPEI I., 1986: The southernmost Rhinegraben and Dinkelberg area: Sonderforschungsbereich 108 der Universität Karlsruhe. Band 1984–1986, 99–113.

    Google Scholar 

  • BONJER K.P., GELBKE C., GILG ROULAND D., MAYER-ROSA D., and MASSINON B., 1984: Seismicity and dynamics of the Upper Rhinegraben: Journal of GEOPHYSICS 55, 1–12.

    Google Scholar 

  • BROWN L.D., and REILINGER R.E., 1986: Epeirogenic and intraplate movements, in: Geophysics Study Committee, Active Tectonics, National Academy Press, Washington D.C.

    Google Scholar 

  • BRUNE J., 1968: Seismic moment, seismicity and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784.

    Article  Google Scholar 

  • GARDNER T.W., JORGENSEN D.W., SHUMAN C., and LEMIEUX C.R., 1987: Geomorphic and tectonic process rates: Effects of measured time interval: Geology, v. 15, 259–261.

    Article  Google Scholar 

  • GUTENBERG B., and RICHTER C.F., 1954: Seismicity of the earth and associated phenomena: Hafner publishing C., New York.

    Google Scholar 

  • HALDIMANN P., NAEF H., and SCHMASSMANN H., 1984: Fluviatile Erosions- und Akumulationsformen als Indizien jungplei stozäner und holozäner Bewegungen in der Nordschweiz und angrenzenden Gebieten: Ber. N.T.B. 84-16. Nagra, Baden.

  • International Atomic Energy Agency I.A.E.A., 1979: Earthquakes and Associated Topics in Relation to Nuclear Power Plant Siting, A Safety Guide: I.A.E.A. No. 50-SG-S1, Vienna.

  • ILLIES J.H., 1975: Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben rift system: Tectonophysics 29, 251–264.

    Article  Google Scholar 

  • ILLIES J.H., and GREINER G., 1979: Holocene movements and state of stress in the Rhinegraben rift system: Tectonophysics 51, 349–359.

    Article  Google Scholar 

  • KOBAYASHI Y., 1976: Hazards from surface faulting in Earthquakes: Bull. Disaster Prevention Res. Inst. (Kyoto, Japan) 26/4, 213–240.

    Google Scholar 

  • LAUBSCHER H.P., 1987: Die tektonische Entwicklung der Nordschweiz: Eclogae geol. helv. 80/2, 287–303.

    Google Scholar 

  • MARUYAMA T., 1964: Statical Elastic Dislocations in an Infinite and Semi-Infinite Medium: Bull. of the Earthq. Res. Institut Tokyo 42, 289–368.

    Google Scholar 

  • Nuclear Regulatory Commission N.R.C., 1980: Reactor Site Criteria, including Appendix A: Code of Federal Regulations, Title 10, Part 100, Revised as of January 1, 1980.

  • PURCARU G., and BERCKHEIMER H., 1981: Quantitative relations of seismic source parameter and a classification of earthquakes: Tectonophysics 84, 57–128.

    Article  Google Scholar 

  • RIBEIRO A., 1986: A stochastic model to estimate maximum expectable magnitude of earthquakes from fault dimensions and slip rate: Terra Cognita 6/4, 611–616.

    Google Scholar 

  • SAVAGE J.C., 1980: Dislocations in seismology, in: Nabarro F.R.N. (ed), Dislocations in solid: North-Holland Publ. Co.

  • SAVAGE J.C., and HASTIE L.M., 1966: Surface deformation associated with dip-slip faulting: J. Geophys. Res. 71/20, 4897–4904.

    Article  Google Scholar 

  • SLEMMONS D.B., and DEPOLO C.M., 1986: Evaluation of active faulting and associated hazards, in: Geophysics Study Committee: Active Tectonics; National Academy Press, Washington D.C.

    Google Scholar 

  • STEKETEE J.A., 1958: On Voltera's dislocations in a semi-infinite elastic medium: Can. J. Phys. 36, 192–205.

    Article  Google Scholar 

  • STEKETEE J.A., 1958: Some geophysical applications of the elasticity theory of dislocations: Can. J. Phys. 36, 1168–1198.

    Article  Google Scholar 

  • WALLACE R.E., 1986: Overview and Recommendations, in: Geophysics Study Committee: Active Tectonics, National Academy Press, Washington D.C.

    Google Scholar 

  • WEICHERT D.M., 1980: Estimation of the earthquake recurrence parameters for unequal observations periods for different magnitudes: Bull. Seismol. Soc. Amer. 70/4, 1337–1346.

    Google Scholar 

  • WYSS M., 1979: Estimating maximum expectable magnitude of earthquakes from fault dimensions: Geology 7, 336–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loew, S., Jenni, JP. & Blanc, B. Quantification of surface faulting potential in a low to moderate active region: An example from the Southern Rhinegraben area. Bulletin of the International Association of Engineering Geology 40, 111–117 (1989). https://doi.org/10.1007/BF02590348

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02590348

Keywords

Navigation