Skip to main content
Log in

The multivariate Fermi-Dirac distribution and its applications in quality control

  • Published:
Journal of the Italian Statistical Society Aims and scope Submit manuscript

Summary

We investigate the multivariate elliptically contoured generalization of a parametric family of univariate distributions proposed by Ferreri (1964) for its potential applications in Quality Control. Such ap-variate Fermi-Dirac distribution has density

$$f(x) = \frac{{\Gamma \left( {{p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\lambda ^p \left( \alpha \right)}}{{\pi ^{{p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} F\left( {{p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2} - 1,\alpha } \right)\left| \Sigma \right|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}\frac{1}{{1 + exp\left\{ {\alpha + \lambda ^2 \left( \alpha \right)\left( {x - \mu } \right)^\prime \Sigma ^{ - 1} \left( {x - \mu } \right)} \right\}}}$$

wherex, μ ∈R p, α ∈R, Σ is ap×p positive definite matrix of rankp and

$$F(p,\alpha ): = \int_0^\infty {\frac{{u^p }}{{I + exp\left\{ {\alpha + u} \right\}}}du} $$

is the Fermi-Dirac integral used in statistical physics.

The Fermi-Dirac family provides, through α, a one-dimensional continuous parametrization that joins the multivariate uniform distribution on an ellipsoid to the multivariate normal distribution.

A discussion of maximum likelihood estimation of its parameters illustrates some interesting nonstandard phenomena. For example, as a by-product, a possible solution to the problem of circumscribing the smallest ellipsoid to a set of points inR p is obtained. The method is illustrated by a multivariate quality control example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. F. andMallows, C. L. (1974): Scale mixtures of normal distributions.J. Roy. Statist. Soc. B, 36, 99–102.

    MATH  MathSciNet  Google Scholar 

  • Balanda, P. K. andMacGillivray, H. L. (1988): Kurtosis: A critical review.Amer. Statistician, 111–119.

  • Blakemore, J. S. (1982): Approximations for Fermi-Dirac integrals, especially the functionF 1/2(η) used to describe electron density in a semiconductor.Solid State Electronics, 111–119.

  • Box, G. E. P. andTiao, G. C. (1973):Bayesian inference in statistical analysis. Addison-Wesley, Reading.

    MATH  Google Scholar 

  • De Simoni, S. (1983):Su una generalizzazione della classe di distribuzioni univariate logistico-formali del Ferreri. Editrice Universitaria, Pisa.

    Google Scholar 

  • Fang, K.-T., Kotz, S. andNg, K. W. (1990):Symmetric Multivariate and Related Distributions. Chapman and Hall, London.

    MATH  Google Scholar 

  • Fang, K.-T. andZhang, Y.-T. (1990):Generalized Multivariate Analysis. Science Press, Beijing, and Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Feller, W. (1966):An introduction to probability theory and its applications. Wiley, New York.

    MATH  Google Scholar 

  • Ferreri, C. (1964): Una nuova funzione di frequenza per l'analisi delle variabili statistiche semplici.Statistica, 24, 223–251.

    Google Scholar 

  • Gnanadesikan, R. (1977):Methods for statistical data analysis of multivariate observations. Wiley, New York.

    MATH  Google Scholar 

  • Johnson, M. E. (1987):Multivariate statistical simulation. Wiley, New York.

    MATH  Google Scholar 

  • Johnson, N. L. andKotz, S. (1970):Continuous univariate distributions-1. Wiley, New York.

    Google Scholar 

  • Kingman, J. F. C. (1972): On random sequences with spherical symmetry.Biometrika, 59, 2, 492–494.

    Article  MATH  MathSciNet  Google Scholar 

  • Taguchi, G. (1979):The Asahi. Japanese newspaper, April 15, 1979.

  • Silverman, B. W. andTitterington, D. M. (1980): Minimum covering ellipses.SIAM J. Sci. Stat. Comput. 1, 4, 401–409.

    Article  MATH  MathSciNet  Google Scholar 

  • Tracy, N. D. andYoung, J. C. (1992): Multivariate control charts for individual observations.J. Qual. Tech., 24, 2, 88–95.

    Google Scholar 

  • Van Cong, H. andDoan-Khanh, B. (1992): Simple accurate general expression of the Fermi-Dirac IntegralF j(a) for arbitrarya andj>−1.Solid-State Electronics, 35, 7, 949–951.

    Article  Google Scholar 

  • Welzl, E. (1991): Smallest enclosing disks (balls and ellipsoids). In:New results and new trends in Computer Science, Maurer, H.ed., 359–370, Springer Verlag, Berlin.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Gasparini.

Additional information

Most of the work done while the author was at Purdue University, partially supported by the National Science Foundation, Grant DMS-9303556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparini, M., Ma, P. The multivariate Fermi-Dirac distribution and its applications in quality control. J. It. Statist. Soc. 5, 307–322 (1996). https://doi.org/10.1007/BF02589093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02589093

Keywords and phrases

Navigation