Advertisement

Bayesian estimation methods for contingency tables

  • Constantinos Goutis
Article

Summary

A method of inputting prior opinion in contingency tables is described. The method can be used to incorporate beliefs of independence or symmetry but extensions are straightforward. Logistic normal distributions that express such beliefs are used as priors of the cell probabilities and posterior estimates are derived. Empirical Bayes methods are also discussed and approximate posterior variances are provided. The methods are illustrated by a numerical example.

Keywords

Logistic normal distribution Empirical Bayes methods independence symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J. (1982), The statistical analysis of compositional data (with discussion),J. R. Statist. Soc. Ser. B, 44, 139–177.zbMATHMathSciNetGoogle Scholar
  2. Aitchison, J. (1985a), Practical Bayesian problems in simplex sample spaces, inProceedings of the second international meeting on Bayesian statistics (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), pp. 15–32. Amsterdam: North Holland.Google Scholar
  3. Aitchison, J. (1985b), A general class of distributions on the simplex, J. R. Statist. Soc. Ser. B, 47, 136–146.zbMATHMathSciNetGoogle Scholar
  4. Aitchison, J. (1986),The statistical analysis of compositional data, London: Chapman & Hall.zbMATHGoogle Scholar
  5. Aitchison, J. andShen, S. M. (1980), Logistic-normal distributions: some properties and uses,Biometrika, 67, 261–272.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Albert, J. H. (1985), Simultaneous estimation of Poisson means under exchangeable and independence models, J. Statist. Comput. Simulat., 23, 1–14.zbMATHMathSciNetGoogle Scholar
  7. Albert, J. H. (1988), Computational methods using a Bayesian hierarchical generalized linear model,J. Amer. Statist. Assoc., 83, 1037–1044.CrossRefMathSciNetGoogle Scholar
  8. Albert, J. H. andGupta, A.K. (1982), Mixture of Dirichlet distributions and estimation in contingency tables,Ann. Statist., 10, 1261–1268.zbMATHMathSciNetGoogle Scholar
  9. Albert, J. H. andGupta, A. K. (1983a), Bayesian estimation methods for 2×2 contingency tables using mixtures of Dirichlet distributions,J. Amer. Statist. Assoc., 78, 708–717.CrossRefMathSciNetGoogle Scholar
  10. Albert, J. H. andGupta, A. K. (1983b), Estimation in contingency tables using prior information, J. R. Statist. Soc. Ser. B, 45, 60–69.zbMATHMathSciNetGoogle Scholar
  11. Altham, P. M. E. (1969), Exact Bayesian analysis of 2×2 contingency table and Fisher's “exact” significance test,J. R. Statist. Soc. Ser. B, 31, 261–269.MathSciNetGoogle Scholar
  12. Bishop, Y. M. M., Fienberg, S. E. andHolland, P. W. (1975),Discrete Multivariate Analysis: Theory and Practice, Cambridge, Mass: The MIT press.zbMATHGoogle Scholar
  13. Bloch, D. A. andWatson, G. S. (1967), A Bayesian study of the multinomial distribution,Ann. Math. Statist, 38, 1423–1435.MathSciNetGoogle Scholar
  14. Crook, J. R. andGood, I. J. (1980), On the application of symmetric Dirichlet distributions and their mixtures to contingency tables, part II,Ann. Statist., 8, 1198–1218.zbMATHMathSciNetGoogle Scholar
  15. Dawid, A. P. (1982), Discussion on “The statistical analysis of compositional data” by J. Aitchison,J. R. Statist. Soc. Ser. B, 44, 139–177.Google Scholar
  16. Dempster, A. P., Laird, N. M. andRubin, D. B. (1977), Maximum likelihood from incomplete data via theEM algorithm (with discussion),J. R. Statist. Soc. Ser. B, 39, 1–38.zbMATHMathSciNetGoogle Scholar
  17. Good, I. J. (1976), On the application of symmetric Dirichlet distributions and their mixtures to contingency tables,Ann. Statist. 4, 1159–1189.zbMATHMathSciNetGoogle Scholar
  18. Goutis, C. (1993), Recovering extra-binomial variation,J. Statist. Comput. Simulat., 45, 233–242.zbMATHGoogle Scholar
  19. Gupta, A. K., Saleh, A. M. MD. E. andSen, P. K. (1989), Improved estimation in a contingency table: independence structure,J. Amer. Statist. Assoc., 84, 525–532.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Kass, R. E. andSteffey, D. (1989), Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models),J. Amer. Statist. Assoc., 84, 717–726.CrossRefMathSciNetGoogle Scholar
  21. Laird, N. M. (1978), Empirical Bayes estimation for two-way contingency tables,Biometrika, 65, 581–590.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Leonard, T. (1972), Bayesian methods for binomial data,Biometrika, 59, 581–589.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Leonard, T. (1973), A Bayesian method for histograms,Biometrika, 60, 297–308.zbMATHMathSciNetGoogle Scholar
  24. Leonard, T. (1975), Bayesian estimation methods for two-way contingency tables,J. R. Statist. Soc. Ser. B, 37, 23–37.zbMATHMathSciNetGoogle Scholar
  25. Leonard, T. andNovick, M. R. (1986), Bayesian full rank marginalization for two-way contingency tables,J. Educ. Statist., 11, 33–56.CrossRefGoogle Scholar
  26. Lindley, D. V. (1964), The Bayesian analysis of contingency tables,Ann. Math. Statist., 35, 1622–1643.MathSciNetGoogle Scholar
  27. Lindley, D. V. andSmith, A. F. M. (1972), Bayes estimates for the linear model (with discussion),J. R. Statist. Soc. Ser. B, 34, 1–41.zbMATHMathSciNetGoogle Scholar
  28. McGullagh, P. andNelder, J. A. (1989),Generalized Linear Model, 2 nd edition, London: Chapman & Hall.Google Scholar
  29. Morris, C. (1983), Parametric empirical Bayes inference: theory and practice,J. Amer. Statist. Assoc., 78, 47–65.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Morris, M. (1991), A log-linear modeling framework for selective mixing,Math. Biosci., 107, 349–377.CrossRefGoogle Scholar
  31. Nazaret, W. A. (1987), Bayesian log liner estimates for three-way contingency tables,Biometrika, 74, 401–410.zbMATHCrossRefMathSciNetGoogle Scholar
  32. Piegorsch, W. W. andCasella, G. (1990), Empirical Bayes estimation for generalized linear models, Biometrics Unit Technical Report, BU-1067-M, Cornell University.Google Scholar
  33. Protter, M. H. andMorrey, C. B. (1977),A First Course in Real Analysis, New York: Springer-Verlag.zbMATHGoogle Scholar
  34. Steffey, D. andKass, R. E. (1991), Discussion on “That BLUP is a good thing: the estimation of random effects» by G.K. Robinson,Statist. Sci., 6, 15–51.MathSciNetGoogle Scholar
  35. Tierney, L. andKadane, J. B. (1986), Accurate approximations for posterior moments and marginal densities,J. Amer. Statist. Assoc., 81, 82–86.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Tierney, L., Kass, R. E. andKadane, J. B. (1989), Fully Laplace approximation to expectations and variances of nonpositive functions,J. Amer. Statist. Assoc., 84, 710–716.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Statistica 1993

Authors and Affiliations

  • Constantinos Goutis
    • 1
  1. 1.University College LondonLondonUK

Personalised recommendations