Skip to main content
Log in

Empirical bayesInterval estimates: An application to geographical epidemiology

  • Published:
Journal of the Italian Statistical Society Aims and scope Submit manuscript

Summary

Empirical Bayes estimates have been advocated as an improvement for mapping rare diseases or health events aggregated in small areas. In particular different parametric approaches have been proposed for dealing with non-normal data, assuming that disease occurrencies follow non-homogeneous Poisson law, whose parameters are treated as random variables. This paper shows how to conduct a complete Empirical Bayes analysis under an exchangeable model in the context of Geographical Epidemiology. Three different approaches for defining confidence limits obtained using a parametric bootstrap are compared: method 1 relies only on the first and second moment of the bootstrapped posterior distributions; method 2 computes the centiles of the bootstrapped posteriors; method 3 equates to α the average of the probabilities derived from the estimated bootstrapped cumulative posterior distributions. The simple Poisson-Gamma formulation was used to model mortality data on Larynx Cancer in the Local Health Units of Tuscany (1980–82 males). Two areas of significant elevated risk are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker R., Chambers J., Wilks A. (1988),The S Language. Wadsworth: Belmont CA.

    MATH  Google Scholar 

  • Bernardinelli L., Montomoli C. (1992), Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk.Statistics in Medicine,11, 983–1007.

    Google Scholar 

  • Besag J., York J., Mollié A. (1991), Bayesian image restoration, with two applications in spatial statistics.Ann. Inst. Statist. Math.,43, 1–59.

    Article  MATH  MathSciNet  Google Scholar 

  • Biggeri A., Braga M., Duca P. G. (1989), Empirical Bayes estimates applied to the analysis of cancer death collected at municipality level.Proceedings XI Meeting International Epidemiological Association. Granada, Spain.

  • Breslow N. E., Day N. E. (1975), Indirect standardization and multiplicative models for rates, with reference to the age-adjustment of cancer incidence and relative frequency data.J. Chron. Dis.,28, 289–303.

    Article  Google Scholar 

  • Carlin B. P., Gelfand A. E. (1990), Approaches for Empirical Bayes confidence intervals.J. Am. Statist. Ass.,85, 105–114.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlin B. P., Gelfand A. E. (1991), A sample reuse method for accurate parametric Empirical Bayes confidence intervals.J. R. Statist. Soc. B,53, 189–200.

    MATH  Google Scholar 

  • Clayton, D., Kaldor J. (1987), Empirical Bayes estimates of age-standardized relative risks for use in disease mapping.Biometrics,43, 671–681.

    Article  Google Scholar 

  • Dagpunar J. (1988),Principles of random variate generation. Oxford Science publication, Clarendon Press: Oxford.

    MATH  Google Scholar 

  • DiCiccio T. J., Romano J. P. (1988), A review of bootstrap confidence intervals.J. R. Statist. Soc. B.,50, 338–354.

    MATH  MathSciNet  Google Scholar 

  • Efron B. (1982),The jacknife, the bootstrap and other resampling plans. SIAM: Philadelphia.

    Google Scholar 

  • Efron B., Tibshirani R. J. (1993),An Introduction to the Bootstrap. Chapman & Hall: New York, 321–322.

    MATH  Google Scholar 

  • Fron B., Morris C. (1975), Data analysis using Stein's estimation and its generalization.J. Am. Statist. Ass.,70, 311–319.

    Article  Google Scholar 

  • Elliott, P., Hills M., Beresford J. (1992), Incidence of cancers of the larynx and lung near incinerators of waste solvents and oils in Great Britain.Lancet,339, 854–858.

    Article  Google Scholar 

  • Gardner M. J. (1984), Over a century of changing interpretation of geographical cancer pattern in England and Wales.Trace Substances in Environmental Health, 527–533.

  • Laird N. M., Louis T. A. (1987), Empirical Bayes intervals based on bootstrap samples.J. Am. Statist. Ass.,82, 739–757.

    Article  MATH  MathSciNet  Google Scholar 

  • Manton K. G., Woodbury M. A., Stallard E., Riggan W. B., Creason J. P., Pellon A. C. (1989), Empirical Bayes procedures for stabilising maps of US cancer mortality.J. Am. Statist. ass.,84, 637–650.

    Article  Google Scholar 

  • Marshall R. J. (1991), Mapping disease and mortality rates using Empirical Bayes estimators.Appl. Statist.,40, 283–294.

    Article  MATH  Google Scholar 

  • Ministero dell'Ambiente,Relazione Annuale: 1992: Roma, febbraio 1992.

  • Mollié A., Richardson S. (1991), Empirical Bayes estimates of cancer mortality rates using spatial models.Statistics in Medicine,10, 95–112.

    Google Scholar 

  • Morgenstern H. (1982), Use of ecological analysis in epidemiologic research.Am. J. Publ. Health,72, 1336–1344.

    Article  Google Scholar 

  • Morris C. N. (1983) Parametric Empirical Bayes inference: theory and applications.J. Am. Statist. Ass.,78, 47–65.

    Article  MATH  Google Scholar 

  • Tsutakawa, R. K. (1988), Mixed models for analysing variability in mortality rates.J. Am. Statist. Ass.,83, 37–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biggeri, A., Braga, M. & Marchi, M. Empirical bayesInterval estimates: An application to geographical epidemiology. J. It. Statist. Soc. 2, 251–267 (1993). https://doi.org/10.1007/BF02589064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02589064

Keywords

Navigation