Journal of the Italian Statistical Society

, Volume 1, Issue 2, pp 203–225 | Cite as

Testing exogeneity in overidentified models

  • Nunzio Cappuccio
  • Renzo OrsiEmail author


In this paper we analyse the consequences of model overidentification on testing exogeneity, when maximum likelihood techniques for estimation and inference are used. This situation is viewed as a particular case of the more general problem of considering how restrictions on nuisance parameters could help in making inference on the parameters of interest. At first a general model is considered. A suitable likelihood function factorization is used which allows a simple derivation of the information matrix and others tools useful for building up joint tests of exogeneity and overidentifying restrictions both of Wald and Lagrange Multiplier type. The asymptotic local power of the exogeneity test in the justidentified model is compared with that in the overidentified one, when we assume that the latter is the true model. Then the pseudo-likelihood framework is used to derive the consequences of working with a model where overidentifying restrictions are erroneously imposed. The inconsistency introduced by imposing false restrictions is analysed and the consequences of the misspecification on the exogeneity test are carefully examined.


Exogeneity Tests Incomplete Models Limited Information Analysis Overidentifying Restrictions JEL subject classification: 211 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchinson J. (1962), Large sample restricted parametric tests,J.R.S.S., Series B, 24, 234–250.Google Scholar
  2. Anderson T. W. (1971),The statistical analysis of time series, Wiley.Google Scholar
  3. Darroch J. N., Silvey S. D. (1963), On testing more than one hypothesis,Annals of Mathematical Statistics, 34, 555–567.MathSciNetzbMATHGoogle Scholar
  4. Engle R. F. (1982), A general approach to Lagrange model diagnostics,Journal of Econometrics, 220, 83–104.CrossRefMathSciNetGoogle Scholar
  5. Engle R. F., Hendry D. F., Richard J.-F. (1983). Exogeneity,Econometrica, 51, 277–304zbMATHCrossRefMathSciNetGoogle Scholar
  6. Florens, J.-P., Mouchart M. (1985), Conditioning in dynamic models,Journal of Time Series Analysis, 6, 15–34zbMATHMathSciNetGoogle Scholar
  7. Florens J.-P., Mouchart M., Richard J.-F. (1979), Specification and inference in linear models,C.O.R.E.D.P. 7943, Universitè Catholique de Louvain, Louvainla-Neuve.Google Scholar
  8. Florens J.-P., Mouchart M., Richard J.-F. (1986), Structural time series modelling: a Bayesian approach,Applied Mathematics and Computation, 20.Google Scholar
  9. Gilbert C. L. (1986), Professor Hendry's econometric methodology,Oxford Bulletin of Economics and Statistics, 48, 283–307.CrossRefGoogle Scholar
  10. Hannan E. J. (1956), The asymptotic power of certain tests based on multiple correlations,J.R.S.S., Series B, 18, 227–233.zbMATHMathSciNetGoogle Scholar
  11. Hausman J. A. (1983), Specification and estimation of simultaneous equation models, inHandbook of Econometrics, volume I, edited by Z. Griliches and M. D. Intriligator, North Holland.Google Scholar
  12. Hendry D. F. (1985), Monetary economic myth and econometric reality,Oxford Review of Economic Policy, 1, 72–83.CrossRefGoogle Scholar
  13. Hendry D. F., Mizon G. E. (1978), Serial correlation as a convenient simplification, not a nuisance: a comment on a study of the Bank of England,The Economic Journal, 98, 808–817.CrossRefGoogle Scholar
  14. Hendry D. F., Richard J.-F. (1983), The econometric analysis of economic time series.International Statistical Review, 51, 111–163.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Holly A. (1985), Testing exogeneity: a survey,Cahiers de Recherches Economiques 8506, D.E.E.P., University of Lausanne.Google Scholar
  16. Holly A. (1987), Specification tests: an overview, inAdvances in Econometrics, edited by T. F. Bewley, Cambridge University Press.Google Scholar
  17. Holly A., Sargan J. D. (1982), Testing for exogeneity within a limited information approach,Cahiers de Recherches Economiques 8204, D.E.E.P., University of Lausanne.Google Scholar
  18. Hwang H. S. (1980), A comparison of tests of overidentifying restrictions,Econometrica, 48, 1821–1825.zbMATHCrossRefMathSciNetGoogle Scholar
  19. Magnus J. R., Neudecker H. (1980), The elimination matrix: some lemmas and applications,SIAM Journal of Algebra and Discrete Mathematics, 1, 422–449.zbMATHMathSciNetCrossRefGoogle Scholar
  20. Nakamura A., Nakamura M. (1981), On the relationship among several specification error tests presented by Durbin, Wu and Hausman,Econometrica, 49, 1583–1588.zbMATHCrossRefGoogle Scholar
  21. Pitman E. J. G. (1949), Notes on non-parametric statistical inference, Columbia University.Google Scholar
  22. Revankar N. S. (1978), Asymptotic relative efficiency analysis of certain tests of independence in structural systems.International Economic Review, 19, 165–179.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Revankar N. S., Hartley M. J. (1973), An independence test and conditional unbiased predictions in the context of simultaneous equation systems,International Economic Review, 14, 625–631.CrossRefzbMATHGoogle Scholar
  24. Richard J.-F. (1984), Classical and Bayesian inference in incomplete simultaneous equation models, inEconometrics and Quantitative Economics, edited by D. F. Hendry and K. F. Wallis, Basil Blackwell.Google Scholar
  25. Sargan J. D. (1958), The estimation of economic relationships using instrumental variables,Econometrica, 26, 393–415.zbMATHCrossRefMathSciNetGoogle Scholar
  26. Sawa T. (1978), Information criteria for discriminating among alternatives regression models,Econometrica, 26, 393–415.MathSciNetGoogle Scholar
  27. Serfling R. J. (1980).Approximation theorems of mathematical statistics, J. Wiley.Google Scholar
  28. White H. (1982), Maximum likelihood estimation of misspecified models,Econometrica, 50, 1–26.zbMATHCrossRefMathSciNetGoogle Scholar
  29. Wu D. (1973), Alternative tests of independence betwen stochastic regressors and disturbances,Econometrica, 49, 1583–1588.Google Scholar

Copyright information

© Societa Italiana di Statistica 1992

Authors and Affiliations

  1. 1.Università di PadovaPadovaItalia
  2. 2.Università di BolognaBolognaItalia

Personalised recommendations