Skip to main content
Log in

Operations for modules on Lie-Rinehart superalgebras

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Letk be a field of characteristic 0 and letA be a supercommutative associativek-superalgebra. LetL be ak−A-Lie-Rinehart superalgebra. From these data, one can construct a superalgebra of differential operatorsV(A,L) (generalizing the enveloping superalgebra of a Lie superalgebra). We will give a difinition of Lie-Rinehart superalgebra morphisms allowing to generalize the notions of inverse image and direct image. We will prove that a Lie-Rinehart superalgebra morphism decomposes into a closed imbedding and a projection. Furthermore, we will see that, under some technical conditions, a closed imbedding decomposes into two closed imbeddings of different nature. The first one looks like a Lie superalgebra morphism. The second one looks like a supermanifold closed imbedding and satisfies a generalization of the Kashiwara’s theorem. Then, as in theD-module theory, we introduce a duality functor. Finally, we will prove that, in the closed imbedding case, the direct image and the duality functor commute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Bibliography

  1. Almeida R.—Kumpera A.: Structure produit dans la catégorie des algébroides de Lie. Ann. Acad. Brasil Cienc53, 247–250 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Altman A.—Klein S.: Introduction to Grothendieck Duality. Lect. Notes Math.146, (1970)

  3. Borel A.: Algebraic D-modules. Academic press (1987)

  4. Bourbaki N.: Algèbre commutative, chapitre 2, Hermann (1961)

  5. Brown K.A.—Levasseur T.: cohomology of bimodules over enveloping algebras, Math. Z.189, 393–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chemla S.: Propriété de dualité dans les représentations coinduites de superalgèbres de Lie. Ann. Inst. Fourier, Grenoble44, 4, 1067–1090 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Chemla S.: Poincaré duality forkA-Lie superalgebras, Bull. Sté. Math. France.122, 371–397 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Chemla S.: Cohomologie locale de Grothendieck et représentations induites de superalgèbres de Lie. Math. Ann.297, 371–382 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fel’dman G.L.: Global dimension of rings of differential operators. Trans. Moscow. Math. Soc. no 1 123–147 (1982)

    Google Scholar 

  10. Hartshorne R.: Algebraic geometry. Graduate Texts in Mathematics, Springer-Verlag (1977)

  11. Hotta R.: Introduction toD-modules. Series of lectures given at the Institute of Mathematical Sciences, Madras, India

  12. Huebschmann J.: Poisson cohomology and quantization. J. reine angew. Math.408, 57–113 (1990)

    MATH  MathSciNet  Google Scholar 

  13. Hussemoller D.: Fiber bundles. Graduate Texts in Mathematics (1966)

  14. Kempf G.R.: The Ext-dual of a Verma module is a Verma module. J. Pure Appl. Algebra75, 47–49 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leites D.A.: Introduction to the theory of supermanifolds. Uspeki Mat Nauk 35:1 (1980)

    MathSciNet  Google Scholar 

  16. Leites D.A.: Spectra of graded commutative ring, Uspeki. Mat. Nauk.29, no3, p 209–210 (1974) (in Russian)

    MATH  MathSciNet  Google Scholar 

  17. Levasseur T.: Critère d’induction et de coinduction pour certains anneaux d’opérateurs différentiels. J. Alg.110, no2, 530–562 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Manin Y.I.: Gauge field theory and complex geometry, A Series of comprehensive studies in mathematics, Springer-Verlag 1988

  19. Mackenzie K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series124, Cambridge University Press, 1987

  20. Penkov I.B.: D-modules on supermanifolds. Invent. Math.71, 501–512 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ogievetskii O.V. and Penkov I.B.: Serre duality for projective supermanifolds. Functional analysis and its applications18, 78–79 (1984)

    Article  MathSciNet  Google Scholar 

  22. Rinehart G.S.: Differnetial form on general commutative algebras. Trans. Amer. Math. Soc.108, 195–222 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  23. Swan R.G.: Vector bundles and projective modules. Trans. Amer. Math. Soc.115, No 2, 261–277 (1962)

    Google Scholar 

  24. Vasconcelos, W.: Derivations of commutative noetherian rings. Math. Z.112, 229–233 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wells R. O.: Differential analysis on complex manifolds, Prentice-Hall, inc 1973

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemla, S. Operations for modules on Lie-Rinehart superalgebras. Manuscripta Math 87, 199–223 (1995). https://doi.org/10.1007/BF02570471

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02570471

Keywords

Navigation