Advertisement

manuscripta mathematica

, Volume 72, Issue 1, pp 275–296 | Cite as

Bounds for the multiplicity of almost complete intersections

  • M. Herrmann
  • J. Ribbe
  • N. V. Trung
  • S. Zarzuela
Article
  • 31 Downloads

Keywords

Prime Ideal Complete Intersection Polynomial Ring Hilbert Series Regular Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Björner, P. Frankl, R. Stanley, The number of faces of balanced Cohen-Macaulay complexes and a generalized Macaulay theorem, Combinatorica 7 (1987), 23–34zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand. 56 (1985), 117–144zbMATHMathSciNetGoogle Scholar
  3. [3]
    J. Harris, Curves in projective space, Les Presses de l’Université de Montréal, 1982Google Scholar
  4. [4]
    M. Herrmann, S. Ikeda, U. Orbanz, Equimultiplicity and Blowing Up, Springer-Verlag, Berlin-Heidelberg 1988zbMATHGoogle Scholar
  5. [5]
    M. Herrmann, J. Ribbe, S. Sarzuela, On Rees and Form Rings of almost complete intersections, Reports of the Max-Planck-Institut für Mathematik, Bonn 90–87Google Scholar
  6. [6]
    M. Hochster, D. Laksov, The linear syzygies of generic forms, Commun. Alg. 15 (1987), 227–239zbMATHMathSciNetGoogle Scholar
  7. [7]
    P. Schenzel, A note on almost complete intersections, in Seminar D. Eisenbud/B. Singh/W. Vogel Vol. 2, Teubner-Texte zur Mathematik Band 48 pp. 49–54, Leipzig 1982Google Scholar
  8. [8]
    P. Schenzel, Regular sequences in Rees and Symmetric algebras I, Manuscripta Math. 35 (1981), 173–193zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57–83zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    N. V. Trung, Bounds for the minimum numbers of generators of generalized Cohen-Macaulay ideals, J. Algebra 90 (1984), 1–9zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G. Valla, A property of almost complete intersections, Quart. J. of Math. Oxford (2) 33 (1982) 487–492zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Valla, M. E. Rossi, Multiplicity andt-isomultiple ideals, Nagoya Math. J. 110 (1988), 81–111zbMATHMathSciNetGoogle Scholar
  13. [13]
    A. Iarrobino, Compressed algebras, Trans. Amer. Math. Soc. 285 (1984), 337–378zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. Herrmann
    • 1
  • J. Ribbe
    • 1
  • N. V. Trung
    • 1
    • 2
  • S. Zarzuela
    • 1
    • 3
  1. 1.Math. Institut der Univ. KölnKölnGermany
  2. 2.Dept. d’Àlgebra i GeometriaBarcelonaSpain
  3. 3.Institute of MathematicsHanoiVietnam

Personalised recommendations