manuscripta mathematica

, Volume 72, Issue 1, pp 213–222 | Cite as

A mean value theorem on differences of two k-th powers of numbers in residue classes

  • Gerald Kuba


Residue Class Acta Arith Prime Number Theorem Geometric Sequence Hurwitz Zeta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Huxley, M.: Exponential sums and lattice points. Proc. London Math. Soc. (3)60, 471–502 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Krätzel, E.: Mittlere Darstellungen natürlicher Zahlen als Differenz zweier k-ter Potenzen. Acta Arith.16, 111–121 (1969)zbMATHMathSciNetGoogle Scholar
  3. [3]
    Kuba, G.: A Mean-Value Theorem on Sums of Two k-th Powers of Numbers in Residue Classes. Abh. Math. Sem. Univ. Hamburg60, 249–256 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Müller, W. and Nowak, W.G.: Lattice points in planar domains: Applications of Hyxley’s “Discrete Hardy-Littlewood method”. In “Number theoretic analysis”, Seminar Vienna 1988–89, Springer Lecture Notes1452 (eds. E. Hlawka and R.F. Tichy), pp. 139–164 (1990)Google Scholar
  5. [5]
    Müller, W. and Nowak, W.G.: On a mean-value theorem concerning differences of two k-th powers. Tsukuba J. Math. Vol.13 No. 1, 23–29 (1989)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Gerald Kuba
    • 1
  1. 1.Institut für Mathematik der Universität WienWienAustria

Personalised recommendations