Advertisement

manuscripta mathematica

, Volume 72, Issue 1, pp 81–94 | Cite as

Computing Turaev-Viro invariants for 3-manifolds

  • Louis H. Kauffman
  • Sóstenes Lins
Article

Abstract

We give a simple surface interpretation for each summand in the evaluation of Turaev-Viro invariants, for the case of small (up to eighth) roots of unity. From this interpretation follows an efficient scheme to compute these invariants. Extensive tables relative to a rich variety of 3-manifolds are explicitly presented.

Keywords

Fundamental Group Closed Surface Admissible State Lens Space Jones Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Kau87] Louis H. Kauffman. State models and the Jones polynomial.Topology, 26:395–407, 1987zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Kau90] Louis H. Kauffman. State models for link polynomials.L’Enseignment Mathématique, 36:1–37, 1990MathSciNetGoogle Scholar
  3. [KL90] Louis H. Kauffman and Sóstenes Lins. An oriented 3-manifold invariant by state summation.Preprint, 1990Google Scholar
  4. [LD89] Sóstenes Lins and Cassiano Durand. A complete catalogue of rigid graph-encoded orientable 3-manifolds up to 28 vertices.Notas Com. Mat. UFPE, 168, 1989Google Scholar
  5. [LD90] Sóstenes Lins and Cassiano Durand. Topological classification of small graph-encoded orientable 3-manifolds.Preprint, 1990Google Scholar
  6. [Lin88] Sóstenes Lins. On the fundamental group of 3-gems and a “planar” class of 3-manifolds.Europ. J. Combinatorics, 9:291–305, 1988zbMATHMathSciNetGoogle Scholar
  7. [LM85] Sóstenes Lins and Arnaldo Mandel. Graph-encoded 3-manifolds.Disc. Math., 57:261–284, 1985zbMATHCrossRefMathSciNetGoogle Scholar
  8. [LS90] Sóstenes Lins and Said Sidki. Characterizing fundamental groups of some graph-encoded 3-manifolds.In preparation, 1990Google Scholar
  9. [Mat88] S. V. Matveev. Transformations of special spines and the Zeeman conjecture.Math. USSR Izvestia, 31:2:423–434, 1988zbMATHCrossRefGoogle Scholar
  10. [TV90] V. G. Turaev and O. Y. Viro. State sum invariants of 3-manifolds and quantum 6j-symbols.Preprint, 1990Google Scholar
  11. [Wit89] Edward Witten. Quantum field theory and the Jones polynomial.Commun. Math. Phys., 121:351–399, 1989zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Louis H. Kauffman
    • 1
    • 2
  • Sóstenes Lins
    • 1
    • 2
  1. 1.Department of Mathematics Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Departmento de MatemáticaUniversidade Federal de PernambucoRecifeBrasil

Personalised recommendations