Advertisement

manuscripta mathematica

, Volume 72, Issue 1, pp 5–25 | Cite as

Perimeter on fractal sets

  • Andrea Braides
  • Piero D’Ancona
Article

Abstract

The Hausdorff measure with fractional index is used in order to define a functional on measurable sets of the plane. A fractal set, constructed using the well-known Von Koch set, is involved in the definition. This functional is proved to arise as the limit of a sequence of classical functionals defined on sets of finite perimeter. Thus it is shown that a natural extension of the ordinary functionals of the calculus of variations leads both to fractal sets and to the fractional Hausdorff measure.

Keywords

Lower Semicontinuous Equilateral Triangle Hausdorff Measure Lower Semicontinuous Function Geometric Measure Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AMBROSIO, L., BRAIDES, A.: Functionals defined on partitions of sets of finite perimeter, I: integral representation and Γ-convergence. J. Math. Pures Appl.69 (3), 285–306 (1990)zbMATHMathSciNetGoogle Scholar
  2. [2]
    AMBROSIO, L., BRAIDES, A.: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl.69 (3), 307–333 (1990)zbMATHMathSciNetGoogle Scholar
  3. [3]
    DE GIORGI, E., COLOMBINI, F., PICCININI, L.C.: Frontiere orientate di misura minima e questioni collegate. Quaderno della Scuola Normale Superiore, Pisa 1970Google Scholar
  4. [4]
    DE GIORGI, E., FRANZONI, T.: Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia3, 63–101 (1979)Google Scholar
  5. [5]
    FALCONER, K.J.: The geometry of fractals. Cambridge: Cambridge University Press 1985Google Scholar
  6. [6]
    FEDERER, H.: Geometric measure theory. New York: Springer 1969zbMATHGoogle Scholar
  7. [9]
    MANDELBROT, B.B.: Les Objects fractals: forme, hasard et dimension. Paris: Flammarion 1975Google Scholar
  8. [7]
    GIAQUINTA, M., MODICA, G., SOUČEK, J.: Cartesian Currents, Weak Diffeomorphisms and Existence Theorems in Nonlinear Elasticity. Arch. Rat. Mech. Anal.106, 97–160 (1989)zbMATHCrossRefGoogle Scholar
  9. [8]
    GIUSTI E.: Minimal surfaces and function of bounded variation. Boston: Birkhäuser 1984Google Scholar
  10. [10]
    ROGERS, C.A.: Hausdorff measures. Cambridge: Cambridge University Press 1970zbMATHGoogle Scholar
  11. [11]
    VISINTIN, A.: Generalized coarea formula and fractal sets. Japan J. Appl. Math., to appearGoogle Scholar
  12. [12]
    VISINTIN, A.: Models of pattern formation. C.R. Acad. Sci. Paris309 (I), 429–434 (1989)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Andrea Braides
    • 1
  • Piero D’Ancona
    • 2
  1. 1.Dip. di Automazione IndustrialeUniversità di BresciaBrescia
  2. 2.Dip. di MatematicaII Università di RomaRoma

Personalised recommendations